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Abstract

I examine the roles of physician sorting across hospitals and physician-hospital com-

plementarities in driving aggregate patient outcomes. I estimate the joint production

function of patient survival between surgeons and hospitals in the context of coronary

artery bypass graft (CABG) surgery. I find that cardiac surgeons engage in positive

assortative matching, such that higher-survival surgeons practice at higher-survival

hospitals. However, this matching does not maximize aggregate survival: low-survival

surgeons exhibit higher returns from practicing at a high-survival hospital than high-

survival surgeons do. I find large mortality reductions from counterfactual allocations

of surgeons to hospitals.
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1 Introduction

The sorting of workers to firms and how they combine to produce output are longstanding

research questions.1 These questions are particularly relevant in healthcare, where the lit-

erature has separately documented substantial variation in doctor and hospital value-added

in the production of health (Chandra et al., 2016a,b; Birkmeyer et al., 2013; Currie and

MacLeod, 2017). Whether hospitals and doctors are complements or substitutes in the

health production function and whether the observed sorting of doctors to hospitals maxi-

mizes aggregate health output have received limited attention.

This paper has two objectives. First, I estimate the value-added of surgeons and hospitals

and their interactions in the production function for a common heart surgery. Second, using

the estimated production function, I evaluate the impact of current and counterfactual allo-

cations of surgeons to hospitals on aggregate patient outcomes. To do so, I focus on coronary

artery bypass graft (CABG) surgery, a common surgery performed on about 200,000 Amer-

icans at an aggregate cost of over $7 billion every year. This surgery has an unambiguously

relevant and well-defined measure of output, patient operative survival, which has also been

the focus of the literature investigating provider quality.2

I estimate the joint production of patient survival between surgeons and hospitals using

a two-way fixed-effects strategy with interactions between value-added. Although variation

in this type of empirical strategy traditionally comes from “job movers”, the cardiac surgery

setting allows me to leverage an additional source of variation: surgeons tend to practice

at multiple hospitals like freelancers, which I call “multi-homing”. Since I observe output

at the surgeon-level directly, I can address identification issues for sorting which have been

outlined in two-way fixed-effect models when using worker earnings as a proxy for worker

productivity in the presence of frictions (Eeckhout and Kircher, 2011).3

Estimating individual provider value-added and their interactions in a model with two-

sided heterogeneity raises two main challenges. First, individual value-added estimates are

noisy when the outcome is a relatively rare event like mortality. To address this issue, I reduce

the dimensionality of the fixed effects by first classifying both surgeons and hospitals into

groups using k -means clustering in the spirit of Bonhomme, Lamadon, and Manresa (2022). I

classify them using a proxy for their individual quality: provider-level risk-adjusted survival.

This measure is used in practice and in the literature to describe providers’ individual quality

1See for example Chade, Eeckhout, and Smith (2017) and Eeckhout (2018) for reviews of this literature.
2In the case of CABG surgery specifically, see for example Huckman and Pisano (2006); Kolstad (2013).
3Eeckhout and Kircher (2011) show that, in any sorting equilibrium with search frictions, worker wages

are non-monotonic in firm types around the optimal allocation, which prevents from identifying firm types
and sorting from wage data alone in a two-way fixed-effects model.
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for CABG surgery. Second, patient sorting into providers may violate the exogenous network

assumption required for identification of the fixed effects in a two-way fixed-effects model. I

use a control function approach leveraging distance to hospitals as an excluded instrument

to identify patient selection on unobservables as in Einav, Finkelstein, and Mahoney (2022).

In the context of two-sided heterogeneity models, this acts as a partial endogenization of

network formation by modeling the choice of hospitals by patients.

I find that surgeon and hospital quality are substitutes in the production function of

survival for CABG surgery. The returns from allocating surgeons to high-survival hospitals

are statistically larger for lower-survival surgeons. This result brings a mechanism outlined in

the medical literature–“failure-to-rescue”–into the economics of the technology of production

(Silber et al., 1992; Ghaferi, Birkmeyer, and Dimick, 2009). High-survival hospitals achieve

higher survival rates by rescuing their patients from complications, and high-skill surgeons

tend to exhibit lower complication rates. My estimates suggest that high-survival surgeons

tend to achieve high survival rates for their patients irrespective of the hospital at which

they perform surgeries. However, low-survival surgeons exhibit much higher survival rates

at higher-survival hospitals. Emphasizing the importance of interactions in the production

function, I show that a simple variance decomposition without interactions would miss the

crucial role of hospital value-added for low-survival surgeons.

Examining sorting, I find positive assortative matching: high-survival surgeons sort into

high-survival hospitals. This sorting does not maximize aggregate patient survival in the

presence of substitutability. Furthermore, there exists positive assortative matching within

geographic regions, indicating that positive assortative matching is not entirely driven by

provider location decisions across regions.

I examine the robustness of my results to accounting for selection into providers on un-

observables, to alternative classification strategies of the unobserved heterogeneity across

surgeons and hospitals, and alternative patient outcomes in both the classification and the

main outcome of interest. Using a control function approach, I show that my results are

robust to allowing for patient selection into providers on unobservables. Selection into treat-

ment may be different when CABG surgery is performed in an emergency setting, so I

evaluate results when excluding such emergency CABG surgeries and obtain similar find-

ings. I obtain similar results when using a variety of alternative classification strategies for

surgeons and hospitals that use different numbers of groups, additional conditional moments

of the survival distribution, include additional patient outcomes in the classification, classify

using noise-adjusted estimates of provider-level risk-adjusted survival, or simply use quintiles

of survival rather than clustering. I also show that the sorting and substitutability results

hold when using alternative patient outcomes, the length and the hospital-level spending of
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the hospital stay.

Using partial equilibrium reallocation exercises, I show that the current sorting of sur-

geons across hospitals substantially raises patient mortality. A random reallocation of sur-

geons to hospitals leads to a 6% decrease in average mortality from CABG surgery. Imple-

menting negative assortative matching would lead to a large decrease in average mortality

of 25%. To put these numbers in perspective, this would amount to approximately 800 lives

saved within Medicare every year for CABG surgery alone. Furthermore, I find that more

than 50% of the gains from national reallocations can be achieved by reallocating surgeons

to hospitals within hospital referral regions. While these results do not account for general

equilibrium effects that would be necessary to quantify the impact of a specific policy, they

indicate that reallocating surgeons within regions may be a fruitful avenue of investigation

in the design of health policies.

This paper contributes to the healthcare literature examining variation in provider qual-

ity and its determinants. Previous work has documented substantial variation in quality

across providers (Chandra et al., 2016a,b; Birkmeyer et al., 2013; Currie and MacLeod,

2017; Abaluck et al., 2021; Einav, Finkelstein, and Mahoney, 2022). Hospitals with better

management practices, communication technologies, and a larger amount of labor improve

patient outcomes (Bloom et al., 2020; Munoz and Otero, 2023; Johnston et al., 2015; Ward

et al., 2019). More experienced doctors in the specific procedure tend to produce better pa-

tient outcomes (Birkmeyer et al., 2013). Recently, Dahlstrand (2021) shows the existence of

substantial complementarities between physician skill and patient health. This paper is most

closely related to Huckman and Pisano (2006), who find evidence that surgeon performance

is hospital-specific. They show that surgeon performance is correlated with their volume

at the specific hospital, but not to their volume at other hospitals. This paper contributes

to this literature in delineating why surgeon sorting matters in determining both individual

provider quality and aggregate patient outcomes by showing how the estimated interactions

between surgeon and hospital value-added map into the economics of the production func-

tion, namely the substitutability between surgeon and hospital value-added, likely driven by

“failure-to-rescue” (Silber et al., 1992; Ghaferi, Birkmeyer, and Dimick, 2009).

This paper also contributes to a longstanding literature on worker sorting across firms.

Recent work by Kline, Saggio, and Sølvsten (2020) and Bonhomme et al. (2023) has shown

substantial positive assortative matching between workers and firms in Europe and the

U.S. using worker earnings with fixed effects and random effects approaches. Bonhomme,

Lamadon, and Manresa (2019) estimate the existence of complementarities directly and find

evidence for (weak) substitutability between workers and firms in the presence of positive

3



assortative matching when using worker earnings.4 This paper has two main contributions

to this literature. First, it documents positive assortative matching in a specific yet im-

portant labor market using a direct measure of output, allowing to remedy identification

concerns when using wages pointed out by Eeckhout and Kircher (2011).5 Second, it shows

the importance of including interactions between workers and firms to both better under-

stand their relative contributions to output, but also to quantify the impact of worker sorting

on aggregate output.

Beyond healthcare, this paper is closely related to the education literature that seeks to

separate the impact of teachers and schools on student outcomes. An abundant literature

has focused on estimating teacher and school effectiveness.6 Most closely related is Jackson

(2013), who also finds evidence that teacher effects are not fully portable across schools, and

estimates that a substantial portion of teacher effects corresponds to teacher-school match

quality. In my paper, I explore match effects that correspond to the existence of comple-

mentarity or substitutability between surgeon and hospital value-added in the production

function of health.

The rest of the paper is organized as follows. I describe the institutional setting, provide

an overview of the data, and show reduced form evidence for surgeon sorting across hospitals

and the existence of significant interactions between proxies for surgeon skill and hospital

quality in Section 2. I delineate the empirical strategy in Section 3. Section 4 evaluates

the sensibility of estimated parameters. I detail the substitutability and sorting results and

assess their robustness in Section 5. Finally, I quantify the impact of surgeon sorting across

hospitals on aggregate patient survival using partial equilibrium reallocation exercises in

Section 6. Section 7 concludes.

4I focus on the literature using two-way fixed-effects strategies here, closest to my paper. Another
literature in labor investigates questions related to worker sorting by estimating sorting models of the labor
market. Notably, Lise, Meghir, and Robin (2016) estimate a sorting model with search frictions and find
evidence that worker and job characteristics exhibit no complementarities for unskilled workers while they
find evidence for complementarities among higher-skill workers.

5In the traditional two-way fixed-effects regression with wage data, workers are paid at their marginal
productivity, so that higher-wage workers are more productive. If high-wage workers sort into high-wage
firms, this indicates that their marginal productivity is higher at these firms rather than at lower-wage firms,
hence identifying complementarities between firms and workers in the production function. Eeckhout and
Kircher (2011) show that equilibrium wages are not monotonic in firms’ productivity in the presence of
search frictions, hence preventing from identifying sorting from wage data alone.

6See for example the review on teacher value-added from Koedel and Rockoff (2015) and Angrist, Hull,
and Walters (2023) for a review on estimating school effectiveness. Abdulkadiroğlu et al. (2020) notably use
a control function approach to allow for selection on unobservables when estimating school effects, extended
to rank-ordered list choices in their setting.
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2 Setting & data description

To study the joint production function of physicians and hospitals, I focus on a complex

yet common surgery: coronary artery bypass graft (CABG) surgery. In this section, I

first describe the institutional setting of Medicare and CABG surgery. I next detail how I

obtain the analysis sample and illustrate basic facts in the data. I describe the existence of

“multi-homing” in the data, i.e., the fact that surgeons have operating privileges at multiple

hospitals, and detail basic facts about the variation in patient outcomes across surgeons and

hospitals separately.

2.1 Institutional Setting

2.1.1 Medicare

I use data from Medicare, which is the health-insurer for Americans aged 65 and older

and the disabled. In addition to being one of the largest health insurers in the U.S. with

about 60 million insurees every year, Medicare is a federal health-insurance program that

provides a relatively even geographic coverage of patients and healthcare providers compared

to individual private insurers. About a third of patients 65 years old and older opt for

Medicare Advantage plans, which are administered by private health-insurers and usually

offer additional coverage such as prescription drugs (Part D). I focus on Traditional Medicare

(TM) which includes about 40 million enrollees every year.

Traditional Medicare has two key advantages to study physicians sorting across hospitals.

First, it has no network restrictions for enrollees, who can go to any doctor or hospital that

accepts Medicare, which the vast majority do. Second, patients can access these healthcare

providers at the same price. This allows me to abstract away from concerns about the

endogeneity of hospital or physician choice to the type of health-insurance.

2.1.2 Coronary artery bypass graft (CABG) surgeries

CABG surgery is one of the treatments of coronary artery disease, the most prevalent heart

disease in the U.S., responsible for more than 375,000 deaths in the U.S. in 2021 (Centers of

Disease Control and Prevention, 2023). Coronary artery disease is the narrowing of the blood

vessels bringing oxygen to the heart muscle. A severe coronary artery blockage can result

in an acute myocardial infraction (AMI), an emergent condition that requires immediate

treatment to minimize tissue damage and ensure survival.

CABG is a common and expensive surgery. It is performed on about 200,000 Americans

every year, of whom about half are 65 years old and older, and was in the top 20 most
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common operating room procedures in 2018 (McDermott and Liang, 2021). CABG surgery

is also expensive: it costs about $47,000 on average per hospital stay, for an aggregate cost of

more than $7 billion every year, bringing it to the top 6 in aggregate cost in 2018 (McDermott

and Liang, 2021). CABG surgery represents a large fraction of cardiac surgeons’ activity:

this surgery is their most common surgery on average on Medicare patients, followed by

heart-valve replacement and aortic surgery.

Patient outcomes after CABG surgery represent a meaningful measure of provider qual-

ity for both surgeons and hospitals. Both the hospital and the operating surgeon have a

substantial role to play in determining patient outcomes from this surgery. While the op-

erating surgeon’s skill is crucial to successfully restore blood flow, the hospital determines

the rest of the team needed to successfully treat CABG patients, both during and after the

surgery.7 Probably for this reason, measures of provider-level risk-adjusted operative mortal-

ity for CABG surgery started being reported in the 1990s as part of report-card programs for

provider quality. Hospital 30-day risk-adjusted mortality rates after CABG surgery are pub-

licly reported yearly by CMS and integrated in their hospital five-star rating measure. For

surgeons, 30-day risk-adjusted mortality calculated at the surgeon level for CABG surgery

started being publicly reported in the state of New York in 1991, followed by other states

including Pennsylvania and Massachussetts.8

Cardiac surgeons operate on their patients at multiple hospitals within the same year

without an actual change of employment, which I leverage as additional variation in my

empirical strategy. A large fraction of cardiothoracic surgeons are not employed by hospitals,

but are rather independent in private practices, like freelancers (Huckman and Pisano, 2006;

Kolstad, 2013). To get access to an operating room to perform surgery, they need to obtain

operating privileges at hospitals. Obtaining such privileges is relatively low cost, usually

a one time administrative cost, and there is no limit in the number of hospitals at which

they can obtain operating privileges. Operating at multiple hospitals notably allows for

scheduling flexibility for surgeons, as detailed in Appendix A.1.

2.2 Data

2.2.1 Sample construction

I infer the identity of the surgeon operating on a specific patient, and in which hospital,

by merging Medicare professional fee files–the Carrier files–to inpatient hospital data–the

MedPAR files–following a similar approach as Chen (2021). I use procedure codes in the

7I detail the processes involved during CABG surgery in Appendix A.1.
8An extensive literature has investigated the impact of provider-level quality reporting on consumer

choice and provider behavior. See for example Kolstad and Chernew (2009) for a review of this literature.
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Carrier files to select CABG surgeries and identify the operating surgeon using the performing

physician. The Carrier file contains professional fees for a random sample of 20% of Medicare

beneficiaries each year. To identify the hospital in which the surgery took place, I use the

claim date and the patient identifier to merge the professional fee into the file containing

the universe of hospital stays for Medicare, the MedPAR files, which identify the hospital

in which a surgery took place. Further details on this matching process are included in

Appendix A.2. I am able to match 90% of the CABG surgeries from the 20% sample Carrier

file as reported in Table 1.

I restrict the sample in four main dimensions as reported in Table 1. First, I restrict my

attention to surgeons whose specialty is consistent with CABG surgery to make sure that

I capture the operating surgeon and I exclude residents. I do so using external data from

the National Plan and Provider Enumeration System (NPPES) to identify the specialty of

the physician. Second, I exclude patients who have been admitted at the end of 2010, but

discharged in 2011 when my data starts, since I do not observe all claims from 2010. Third,

I restrict my attention to surgeon-hospital pairs with more than five observations in the time

period. This imposes a minimum of five surgeries per hospital and per surgeon, so that the

activity of a surgeon at a specific hospital can be more precisely estimated. Very low Medicare

volume surgeons and hospitals are therefore excluded. Fourth, I exclude patients residing or

treated by providers outside of mainland U.S. to ensure that patients can be matched to a

hospital referral region (HRR). To align the samples when using a control function or not, I

also exclude hospital-surgeon pairs in hospital referral regions where patients only received

CABG surgery from hospitals outside the HRR, since I cannot estimate demand for these

patients using HRR as market definition.

The final sample includes a total of 110,672 patients treated by 2,892 surgeons across

1,167 hospitals between 2011 and 2017.9 Patient covariates are reported in Table 2. The

Charlson score is a measure of health: it aggregates seventeen comorbidities based on severity

from diagnoses listed in all claims in the past twelve months prior to surgery into a score

from 0 to 24, with a larger score indicating poorer health. Patients undergoing CABG

surgery exhibit an average Charlson score of 3.41, indicating moderate to high health risk.

40% of patients in the sample have had an acute myocardial infarction (AMI) and 42% of

them received a diagnosis of congestive heart failure (CHF) in the year prior to surgery.

Consequently, short-term mortality after CABG surgery is non-null: the average mortality

9The total number of observations is larger than the total number of patients for two reasons. First, 602
patients received CABG surgery more than once in the 2011-2017 final sample. Second, 16.3% of surgeries
exhibit more than one performing surgeon in the final sample. When more than one surgeon operates on a
patient, I assign the patients’ outcome from the surgery to both surgeons assuming these observations are
independent.
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after CABG surgery is 4% within 30 days and 5% within 60 days in the final sample.

2.2.2 Surgeons practicing at multiple hospitals within a year: “multi-homing”

The fact that surgeons operate on patients at multiple hospitals within the same year, which

I call “multi-homing,” is a sizeable addition to the usual variation provided by job movers

in employer-employee matched data. I define multi-homers as surgeons observed in more

than one hospital in at least four years of the final sample, i.e. more than half of the sample

time frame. I consider all other surgeons observed in more than one hospital as “traditional

movers,” i.e surgeons who shifted their entire practice from one hospital to the next. This

data-driven definition is imperfect, but it allows me to get a sense of the additional variation

provided by multi-homers. Note that this definition assumes that surgeons would not change

hospital employment four or more times in seven years, but also that a surgeon observed

at multiple hospitals within a year three times or less necessarily changed employment. It

can therefore both under- and overestimate the share of multi-homers in the data, but it

has no impact on the aggregate variation used for identification. Based on this definition,

Appendix Figure B.1 shows that multi-homers represent close to 13% of surgeons and 19%

of surgeries in the final sample, as compared to 25% for traditional movers. Overall, the

number of surgeons observed at multiple hospitals represents almost 40% of surgeons in the

final sample.

Differences in patients treated for each surgeon category are reported in Appendix Ta-

ble B.1. Overall, multi-homers are more likely to treat younger, lower-income patients in

large-population ZIP codes, who tend to be sicker at baseline. These differences likely reflect

the location of surgeons: multi-homers are more likely to practice in larger cities, which is

consistent with the capacity constraint explanation for the source of multi-homing for sur-

geons. Another notable difference is that traditional movers tend to have graduated from

medical school more recently than single-homers and multi-homers, consistent with early

carrier job moves.

Multi-homing happens for a susbtantial share of a surgeon’s activity. Appendix Table B.2

describes how multi-homers split their activity when they multi-home. When a surgeon

operates at two hospitals in a year, on average 27% of their surgeries are performed outside

of their top-choice hospital. When a surgeon operates at three or more hospitals, more than

40% of their surgeries are performed outside of their top-choice hospital. In conclusion,

multi-homing is not a marginal practice at the surgeon level.
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2.2.3 Motivating facts

The variation in patient survival across surgeons and hospitals separately is quantitatively

important for CABG surgery. In Panel 1a of Figure 1, I depict the average 30-day risk-

adjusted survival for hospitals and surgeons separately, after adjusting for measurement

error using empirical Bayes shrinkage techniques detailed in Appendix A.5. I compute the

risk-adjusted survival at the patient level using a logit model including patient observables

as delineated in Appendix A.3. The standard deviation across hospitals represents about 2

percentage points of 30-day survival after adjusting for measurement error. This represents

about half of the average 30-day mortality for CABG surgery. The variation across surgeons

is similar, also amounting to about 2 percentage points of 30-day survival.10

Note that the averages across hospitals include the impact of surgeons and vice versa

in Panel 1a of Figure 1, so that we cannot immediately isolate the relative contributions

of surgeons versus hospitals in determining patient outcomes. Furthermore, surgeon sorting

across hospitals may play a substantial role in driving this heterogeneity across providers.

For example, high-survival hospitals may achieve such performances because they attract

high-survival surgeons.

I find suggestive evidence that surgeon sorting across hospitals is positive and substan-

tial, highlighting the need to understand its role in determining provider performances. In

Panel 1a of Figure 1, I use the CMS five-star ratings for hospitals in 2017 to proxy for hos-

pital quality. For surgeons, since Birkmeyer et al. (2013) found a strong positive correlation

between bariatric surgeons’ skill and their recent volume in the specific surgery, I proxy

surgeon skill with the surgeon’s average yearly volume for CABG surgery within Medicare

over 2012 to 2017 and group them into quartiles. High-experience quartile surgeons tend to

perform a higher share of surgeries at high-CMS rating hospitals, while the converse is true

for low-experience quartile surgeons. The correlation between surgeon quartiles formed using

yearly average CABG volume and CMS overall hospital rating is .13. Extending this analysis

to additional proxies for hospital quality and surgeon skill, Appendix Table B.4 shows that

correlations between proxies for surgeon skill and hospital quality tend to be positive. The

only exceptions include when hospital quality is measured for non-cardiac related conditions

like pneumonia or chronic obstructive pulmonary disease, emphasizing the need to measure

provider quality on the dimension relevant for both surgeons and hospitals.

With sorting, the existence of complementarity or substitutability between surgeon skill

10Without measurement error adjustment, the variation across hospitals and surgeons is larger and larger
for surgeons, as delineated in Appendix Table B.3. The standard deviation across hospitals amounts to 2.4
percentage points of 30-day survival against 3.3 percentage points of 30-day survival across surgeons. Results
are similar after risk adjustment.

9



and hospital quality could also contribute to the heterogeneity depicted in Panel 1a of Fig-

ure 1. The existence of complementarity or substitutability implies that surgeon skill and

hospital quality are not separable in the production of patient outcomes. If there exist sub-

stantial complementarities between surgeon skill and hospital quality, positive assortative

matching will allow high-skill surgeons to achieve even better performances at high-survival

hospitals. If on the contrary they are substitutes, low-skill surgeons will tend to achieve

worse performances with positive assortative matching. To determine whether aggregate

survival could be improved with alternative sorting of surgeons across hospitals, we need the

disentangle the impact of sorting from the impact of complementarities or substitutability on

survival. If surgeon skill and hospital quality are substitutes, positive assortative matching

does not maximize patient outcomes: reallocating surgeons across hospitals could improve

patient outcomes.

Using external proxies for surgeon skill and hospital quality, I investigate the existence

of non-separability between the two in the production of survival in CABG surgery. To do

so, I run the following regression

yijht = µ1Qj + µ2Qh + µ3Qj ×Qh + βXit + γt + ϵijht (1)

where yijht depicts 30-day survival for patient i operated by surgeon j at hospital h in year t,

Xit includes patient covariates for risk-adjustment, γt are year fixed effects, and Qj and Qh

represent proxies for surgeon skill and hospital quality respectively.11 In this regression, µ3

captures the non-separability between surgeon skill and hospital quality. If it is zero, surgeon

skill and hospital quality are separable in the production of patient survival. If not, not only

non-separability will have a substantial role in explaining the heterogeneity across providers

in a manner intricately linked with sorting, but the sign of the coefficient will be informative

as for whether they are substitutes if it is negative or complements if it is positive.

As reported in Table 3, surgeon skill and hospital quality appear to be non-perfectly

separable since I can reject that µ3 is equal to zero in most specifications.12 This is true

using several proxies for surgeon skill and hospital quality, including the noise-adjusted

11Dahlstrand (2021) uses a similar approach to identify non-separability between physician skill and
patient health. Adhvaryu et al. (2020) uses a similar regression to test for the separability between manager
and worker productivity in logs within the firm.

12The fact that I cannot reject zero for µ3 in the last specification is not surprising when realizing that,
while positively correlated with noise-adjusted measures of risk-adjusted survival for surgeons, average yearly
CABG volume appears to be a weak proxy for surgeon’s skill measured as 30-day survival. The correlation
between the surgeon yearly CABG volume and the surgeon-level noise-adjusted 30-day risk-adjusted survival
for CABG is .018. Note that average yearly CABG volume in Medicare is also a proxy itself for a surgeon’s
total CABG volume during the time period of my sample. This also emphasizes the importance of estimating
provider effects directly on the outcome of interest.

10



hospital and surgeon fixed effects reported in Panel 1a of Figure 1, 30-day survival for

acute myocardial infarction (AMI) calculated by CMS for hospitals, and surgeons’ average

yearly CABG volume in Medicare. In addition, I find suggestive evidence of substitutability

between surgeon skill and hospital quality in the production of survival, since the estimates

for µ3 tend to be negative.

This reduced form evidence suggests that both sorting and non-separability between

surgeon skill and hospital quality play a substantial role in driving the heterogeneity across

providers in Panel 1a of Figure 1. However, the evidence above is incomplete since the

proxies used are only imperfect predictors of individual provider quality. Instead of using

external proxies for surgeon skill and hospital quality that do not fully reflect their respective

heterogeneity in the specific outcome of interest, I estimate surgeon and hospital effects

directly. To do so, I use an empirical approach that allows me to estimate separately the

effect of surgeons, hospitals, and their interactions in the production of survival from CABG

surgery. With this approach, I can then separate the impact of sorting from the impact

of complementarities or substitutability on aggregate survival, which allows me to evaluate

alternative counterfactual allocations of surgeons across hospitals.

3 Empirical strategy

I leverage the existence of multi-homers and traditional movers in a two-way fixed-effects

approach including interactions between surgeon and hospital unobserved heterogeneity. I

first classify hospitals and surgeons into groups using k -means clustering in the spirit of Bon-

homme, Lamadon, and Manresa (2019, 2022). Thanks to this classification step, I can both

address estimation error on parameters of interests and estimate the existence and strength

of complementarities between surgeons and hospitals, using a non-parametric production

function of survival in the second step. Assuming selection on observables, the patient-

surgeon-hospital match is assumed to be exogenous conditional on patient observables. I

show how to relax this assumption by partially endogenizing network formation through

modeling the choice of hospitals and using distances to hospitals as excluded instruments.

3.1 Production function of survival for CABG

Assume a production function of survival for patient i treated by surgeon j in hospital h

such that

Y ∗
ijht = g(αj, ψh, Xit) + ϵijht
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where αj and ψh are, respectively, the unobserved heterogeneity of the surgeon and hospital,

Xit are patient observables, and ϵijht are unobserved health shocks. For simplicity, I will

assume that the unobserved shocks ϵijht are mutually independent. This assumption rules

out spillover effects where a surgeon may become better as they perform more at a hospital,

for example.

Y ∗
ijht is the potential outcome, here 30-day survival, of patient i treated by surgeon j in

hospital h: it takes values 0 if the patients dies and 1 if the patient survives. Note that this is

not a latent variable model. The function g describes how surgeon and hospital heterogeneity

and patient observables combine to produce patient survival. Assuming E[ϵijht|αj, ψh, Xit] =

0, the conditional expectation of patient survival is equal to the production function g.

E[Y ∗
ijht|αj, ψh, Xit] = g(αj, ψh, Xit)

I seek to estimate, rather than assume, the existence and magnitude of complementarities

between surgeons and hospitals. Both the direction and magnitude of complementarities are

needed to quantify the potential gains and losses from alternative allocations of surgeons

to hospitals. I first assume that the production function g is monotonic in αj and ψh, a

reasonable assumption when examining an output measure directly. This assumption does

not restrict the pattern of complementarities between surgeon and hospital quality. Fix

patient observables such that Xit = X̄. Complementarities between surgeon and hospital

quality are represented by the sign and magnitude of the cross-partial derivatives in the

production function.
∂2g(αj, ψh, X̄)

∂αj∂ψh
(2)

When equation (2) is positive, surgeons and hospitals are complements: the return to allocat-

ing high-αj surgeons to high-ψh hospitals is larger than for low-αj surgeons. The production

function is supermodular. When equation (2) is negative, surgeons and hospitals are substi-

tutes: the return to allocating low-αj surgeons to high-ψh hospitals is larger than for high-αj

surgeons. The production function is submodular. Finally, when equation (2) is equal to

zero, the contributions of surgeons and hospitals to the production function are independent.

Figure 2 illustrates these differences graphically: the cross-partial derivative of the pro-

duction function can be evaluated as the differences in slopes across surgeons in these graphs.

In Figure 2a, hospital and surgeon quality are assumed to be separable. This notably cor-

responds to production functions where αj and ψh enter additively. In this case, the slopes

are identical across surgeons: the return to allocating surgeons to high-ψh hospitals is inde-

pendent of the surgeon. Figure 2b shows the case where surgeon and hospital quality are
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complements: the slope is larger for high-αj surgeons. Consequently, the return to allocating

surgeons to high-ψh hospitals is larger for high-αj surgeons. Conversely, hospital and surgeon

quality are assumed to be substitutes in Figure 2a: the slope is larger for lower-αj surgeons,

such that the return to allocating surgeons to high-ψh hospitals is larger for low-αj surgeons.

Denote the observed survival of patient i treated by surgeon j in hospital h as Yijht such

that

Yijht = DijhtY
∗
ijht

where Dijht is an indicator for the existence of a match with patient i treated by j in hospital

h. The matrix D describes the network of patients, physicians, and hospitals. Note that

observed and potential survival coincide when Dijht = 1:

E[Yijht|Dijht = 1, αj, ψh, Xit] = E[Y ∗
ijht|Dijht = 1, αj, ψh, Xit]

= g(αj, ψh, Xit) + E[ϵijht|Dijht = 1, αj, ψh, Xit] (3)

There are two main challenges to recover complementarities between surgeon and hospital

quality as well as the sorting of surgeons across hospitals. First, estimates for αj and ψh

are noisy measures for quality since operative mortality from CABG surgery is a rare event.

In particular, the average 30-day mortality rate is 4% in the sample, while the mean and

median number of surgeries per surgeon is 45 and 37, respectively, against 95 and 69 for

hospitals, as depicted in Appendix Table B.5. The noise in these individual estimates of

provider quality is a challenge to estimate sorting, but also to recover the magnitude of

complementarities between surgeon and hospital quality.13 I address this issue by grouping

surgeons and hospitals in a first step in the spirit of Bonhomme, Lamadon, and Manresa

(2022). I cluster providers using their average risk-adjusted survival as a proxy for their

individual quality using a k -means algorithm, as detailed in the next subsection. Using this

classification, I can next recover grouped fixed effects estimates for surgeons’ and hospitals’

types as well as their interactions in a second step.

Second, parameters αj and ψh are identified if and only if the network is exogenous, i.e.,

ϵijht ⊥ Dijht|αj, ψh, Xit, ∀i, j, h, t

This assumption implies that E[ϵijht|Dijht, αj, ψh, Xit] = E[ϵijht|αj, ψh, Xit] = 0 in equa-

tion (3). This is the exogenous network assumption, common in two-way fixed-effects model

as in Abowd, Kramarz, and Margolis (1999). The probability for a patient to be treated at

13Noise in the individual fixed effects also magnifies the bias on the sorting parameter, called limited
mobility bias, which has been shown to be quantitatively important in the literature (Kline, Saggio, and
Sølvsten, 2020; Bonhomme et al., 2023).
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a hospital h by a surgeon j can depend on the individual hospital and surgeon heterogeneity

and patient observables, but it cannot depend on unobservables at the patient level that have

an impact on their survival Y ∗
ijht. In the case of patient outcomes, this assumption may be

violated if patients select into hospitals or surgeons on unobservables. I address this concern

using distances to providers as instruments to identify selection on patient unobservables. I

delineate this approach in subsection 3.3.

3.2 Classifying hospitals and surgeons

I group individual surgeons and hospitals to reduce the dimensionality of the fixed effects

in the two-sided heterogeneity model.14 This dimensionality reduction addresses the noise

in individual fixed effects by estimating the quality at the provider group level, which in

turn allows me to estimate interactions in the production function and sorting. This consists

in a two-step grouped fixed-effects approach similar to Bonhomme, Lamadon, and Manresa

(2019, 2022), with the difference that I cluster both sides, i.e., hospitals and surgeons.

To group surgeons and hospitals, I first need to obtain individual provider moments that

identify individual provider types. Using provider-level average risk-adjusted survival to

identify the individual provider types requires a provider’s average risk-adjusted survival to

be increasing in the individual provider type. To see what this assumption implies, assume

away patient observables for simplicity here and consider the average survival at hospital h

in the population as

E[Yijht|ψh] =
∫

g(αj, ψh)︸ ︷︷ ︸
Production function

f(αj|ψh)︸ ︷︷ ︸
Sorting

dαj (4)

where g(αj, ψh) is the production function, assumed to be monotonic in individual surgeon

and hospital quality, and f(αj|ψh) describes the probability to observe surgeon j conditional

on hospital h, which describes sorting of surgeons across hospitals. In the absence of sorting,

individual quality is identified from the average survival: the average survival at hospital h

is increasing in its individual quality ψh since g is monotone in ψh.

With sorting, f(αj|ψh) depends on ψh and identification may fail with negative assorta-

tive matching. To see this, take the example of a linear and additive production function

abstracting away from patient observables for simplicity such that g(αj, ψh) = αj + ψh. In

14Theoretical properties of the grouped fixed-effects estimator has been established in Bonhomme and
Manresa (2015); Bonhomme, Lamadon, and Manresa (2019) when assuming the unobserved heterogeneity
is discrete in the underlying population and the number of types is known.
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this example, the average survival at hospital h in the population can be written as

E[Yijht|ψh] = ψh + E[αj|ψh]

With positive assortative matching, E[αj|ψh] is increasing in ψh, so average survival at

hospital h is increasing in its quality and identifies the individual hospital type. With

negative assortative matching, E[αj|ψh] is decreasing in ψh, which adds an “offsetting” effect

to the individual quality of the hospital. In that case, average survival is not necessarily

increasing in ψh and identification of the individual type from average survival may fail.

Two different hospital types may exhibit the same average survival, which prevents from

separating their individual types from their average survival. Consequently, identification

of the individual types from individual moments requires that these individual moments are

increasing in the provider’s type. This may not always be true under negative assortative

matching. I will use several alternative moments to evaluate the robustness of the results to

this assumption.

The goal of this classification is to cluster hospitals and surgeons into groups capturing

their individual quality. Average risk-adjusted survival from CABG surgery is used as a

measure of quality in practice in report-cards for surgeons and hospitals. It is publicly

reported and used in CMS quality ratings for hospitals, for example. It is also used in

the literature evaluating hospital and surgeon quality (Huckman and Pisano, 2006; Ghaferi,

Birkmeyer, and Dimick, 2009; Kolstad, 2013). I use provider-level risk-adjusted survival as a

proxy for individual quality to group surgeons and hospitals into quality groups. I compute

it following the methodology used in the literature as the ratio of observed over predicted

survival for the provider as delineated in Appendix A.4.

I group surgeons and hospitals using k -means clustering on the computed average risk-

adjusted survival as a proxy for individual quality. The groups should capture the underlying

heterogeneity in quality across individual providers. K -means is well-suited for this purpose,

as it creates the groupings by maximizing the distance in the average moments across groups,

and minimizes the distance in the individual average moments within groups, using the

euclidian distance. I use both standardized 30- and 60-day average risk-adjusted survival

to form the groups. The number of groups needs to be specified by the researcher ex-ante.

I will examine several alternative number of groups for both surgeons and hospitals. More

details on the k -means algorithm are reported in Appendix A.6. I will show that the variance

in survival across k -means groups indeed represents a substantial fraction, over 80%, of the

variance in survival across individual providers. I will also examine alternative grouping
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methods, such as simple quintiles of risk-adjusted survival.15

When the production function is monotonic and positive assortative matching exists, I can

accurately recover individual surgeon and hospital types from the grouped fixed effects. As

shown in Monte Carlo exercises in Appendix A.7, the correlation between true and estimated

surgeons’ and hospitals’ grouped fixed effects is over 0.9. With negative assortative matching,

surgeons and hospitals are misclassified, which biases against finding any sorting of surgeons

across hospitals. Increasing the number of groups partially alleviates misclassification and

allows us to recover the direction of sorting.16

Using the groups recovered from the classification steps, I seek to estimate the production

function of survival with functional form

g(αl(j), ψk(h), κl(j)k(h), Xit) = αl(j) + ψk(h) + κl(j)k(h) + βXit (5)

where αl(j) is the grouped type of surgeon j, ψk(h) is the grouped type of hospital h, and

κl(j)k(h) are interactions between surgeon and hospital grouped types in the production func-

tion. This production function is non-parametric in the sense that the existence and magni-

tude of the cross-partials in the production function as in equation (2) are estimated directly

through the interaction terms.

Note that this specification assumes away complementarities between surgeon or hospital

quality and patient observables. In other words, I assume that hospital and surgeon quality

have an homogenous treatment effect on patients. My estimates therefore depict interactions

between surgeon and hospital quality on the average patient.

3.3 Controlling for patient selection into providers

I make two alternative assumptions on the relationship between unobserved health shocks

ϵijht and the network Dijht.

15Grouping surgeons and hospitals also addresses biases in the variance and covariance estimates in two-
way fixed-effects models (Bonhomme, Lamadon, and Manresa, 2019, 2022). Recent work has shown that
this bias is quantitatively important and correcting for it leads to different conclusions on the respective
contributions of worker and firm heterogeneity in wage dispersion, as well as on the direction of sorting of
workers into firms (Kline, Saggio, and Sølvsten, 2020; Bonhomme et al., 2023). Using a rare event as an
outcome magnifies this concern and supports the use of groups to accurately recover the sorting parameter
while also allowing for interactions in surgeon and hospital quality.

16Increasing the number of groups can remedy some of the classification error but at the cost of a larger
limited mobility bias. The limited mobility bias results in a large downward bias on the sorting estimates, and
large upward bias on the firm variance estimates (Kline, Saggio, and Sølvsten, 2020; Bonhomme et al., 2023).
Consequently, increasing the number of ex-ante groups K results in a trade-off between classification error
from k -means clustering and the limited mobility bias through weaker firm network connections (Jochmans
and Weidner, 2019; Bonhomme, Lamadon, and Manresa, 2022).
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Approach A: Exogenous network conditional on observables. Network formation,

i.e., the formation of patient-surgeon-hospital triplets, is exogenous conditional on patients

observables Xit, the year unobserved heterogeneity γt, and unobserved heterogeneity αl(j),

ψk(h), κl(j)k(h):

ϵijht ⊥ Dijht|Xit, αl(j), ψk(h), κl(j)k(h), γt, ∀i, j, h, t (6)

In other words, the realization of a link Dijht is independent of unobservables ϵijht conditional

on observables Xit and unobserved heterogeneity αl(j), ψk(h), κl(j)k(h), γt. Note that this

assumption implies that the probability for a patient to be treated by a specific surgeon j

at a hospital h cannot depend on ϵijht, but it allows this probability to depend on patient

observables Xit, the surgeon and hospital unobserved heterogeneity αl(j), ψk(h), and κl(j)k(h),

and the year unobserved heterogeneity γt.

The network exogeneity assumption requires that patient selection into surgeons and

hospitals happens on observables. I use a rich set of patient observables from the Medicare

claims data that includes various demographics, including age, gender, Medicaid eligibility,

income and population in the ZIP code of residence, but also health status based on di-

agnoses on claims in the 12 months prior the surgery. These diagnoses identify seventeen

comorbidities that are aggregated in a health score, the Charlson score. Yet, if selection

happens on patient unobservables, the network exogeneity assumption is violated. I relax

this assumption below.

Under the network exogeneity assumption, I can recover surgeon and hospital grouped

fixed effects from estimating in a second step:17

Pr[Yijht = 1|Xit, αl(j), ψk(h), κl(j)k(h), γt] = αl(j) + ψk(h) + κl(j)k(h) +
∑
p

βpXit,p + γt (7)

Approach B: Partially endogenous network using distance to the hospital as an

excluded instrument. Despite a rich set of patient covariates, there may still be selection

on patient unobservables: patients may select into providers based on private information

not captured in the claims data. To identify selection on unobservables, I use the distance

between the hospital and the patient ZIP codes as an excluded instrument, as used recently in

Einav, Finkelstein, and Mahoney (2022) also in the context of a control function. Distance

to the hospital is a strong predictor of hospital choice for CABG surgery, as reported in

Subsection 5.3.

17Note that equation (7) assumes perfect separability between provider value-added and patient health,
hence estimating surgeon and hospital effects on the average patients. Dahlstrand (2021) estimates the
non-separability between physician value-added and patient health and finds substantial complementarities
in the context of general medicine. Complementarities between patient health and provider value-added are
beyond the scope of this paper that focuses on surgeon sorting across hospitals.
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I partially endogenize network formation by modeling the choice of hospitals. Recall the

observed survival Yijht for patient i treated by surgeon j in hospital h is

Yijht = DijhtY
∗
ijht

but I now assume that

Dijht = 1{uih ≥ uih′ , ∀h′}

with uih = δh − τ ln(dih) + ηih (8)

where uih is the utility from patient i from receiving the surgery at hospital h, δh is the

perceived quality of hospital h, on which all patients agree within a market, and dih is the

distance between the patient ZIP code and the hospital ZIP code. I assume ηih are type-I

extreme value error terms.18 The outside option is defined as choosing a hospital outside of

the patient’s hospital referral region (HRR) of residence.

Here, part of the network is endogenous, so that ϵijht and ηih are correlated. Following

Dubin and McFadden (1984), I impose the following linear structure to the conditional

expectation of ϵijht:

E[ϵijht|αl(j), ψk(h), κl(j)k(h), γt, Xit, ηi1, ..., ηiH , Di = h] =
∑
s∈H

ϕs(ηis − µη) + φ(ηih − µη) (9)

where µη is the Euler constant (mean of logit errors), H the set of hospitals, and Di indicates

the chosen hospital.

The expected survival conditional on the fixed effects, patient observables Xit, the choice

of hospital Di, and the unobserved logit shocks ηi1, ..., ηiH can be written as

E[Yijht|αl(j), ψk(h),κl(j)k(h), γt, Xit, ηi1, ..., ηiH , Di = h] =

αl(j) + ψk(h) + κl(j)k(h) + βXit + γt +
∑
s∈H

ϕs(ηis − µη) + φ(ηih − µη) (10)

Integrating equation (10) over the unobserved demand shocks ηi1, ..., ηiH delivers the

18Surveys reported in the medical literature indicate that the hospital is chosen by the operating surgeon
and the patient jointly, with more role for surgeons for cardiovascular surgeries (Wilson, Woloshin, and
Schwartz, 2007). The choice model above supports a joint decision between surgeons and patients.
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estimating equation

E[Yijht|αl(j), ψk(h), κl(j)k(h), γt, Xit, ln di1, ..., ln diH , Di = h] =

αl(j) + αh + κl(j)k(h) + βXit + γt +
∑
s∈H

ϕsθis(h) + φθih(h)

(11)

where θis(h) = E[ηis − µη| ln di1, ..., ln diH , Di = h] are the control functions such that

θis(h) =

− ln p̂is if s = h

p̂is
1−p̂is ln p̂is if s ̸= h

and p̂is is the predicted probability for patient i to choose hospital s from the demand model

in equation (8). Derivations are included in Appendix A.8. Note that the control function

is positive when s = h but negative otherwise since ln p̂is < 0 with 0 < p̂is < 1.

Parameter φ is choice-specific and captures Roy-type selection or selection on gains: if

a patient is choosing a hospital because he is idiosyncratically more likely to improve there,

then φ > 0. The intuition for identification is the following: when patients travel farther

than expected for a hospital, leading to a larger ηih, are more likely to survive after CABG

surgery, then the probability to survive after CABG surgery and ηih are positively correlated

and this identifies selection on gains.

Parameters ϕs are hospital-specific and capture selection into specific hospitals. If sick

patients select into high-quality hospitals, ϕs < 0. The intuition for identification is similar

as above: when patients travelling farther for a specific hospital are consistently less likely

to survive after CABG surgery, then ϕs < 0 and these patients must be sicker. If healthier

patients select into high-quality hospitals, ϕs > 0.

I estimate the demand model market by market, using hospital referral regions (HRRs)

as market definitions.19 I then construct the control functions θ̂is based on the estimated

predicted probabilities p̂is, and recover surgeon and hospital grouped fixed effects from the

19Hospital referral regions (HRRs) are healthcare market definitions constructed by the Dartmouth Atlas
based on where patients receive care in the U.S. Receiving CABG surgery outside of the patients’ HRR of
residence is defined as the outside option.
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following regression:

Pr[Yijht = 1|Xit, αl(j), ψk(h),κl(j)k(h), γt, ln di1, ..., ln diH , Di = h] =

αl(j) + ψk(h) + κl(j)k(h) +
∑
p

βpXit,p + γt +
∑
s∈H

ϕsθ̂is(h) + φθ̂ih(h)

(12)

Distance to the hospital is an excluded instrument here, since it is excluded from the last

step: distance to the hospital can only have an impact on patient survival through the choice

of hospital. Since CABG surgery is usually performed in non-emergency settings, distance

to the hospital as time to treatment should have no impact on patient survival.20 Yet, the

exclusion restriction may fail if hospital locations are endogenous to patient characteristics

relevant for survival. I confirm the plausibility of this assumption using patient observables

in Subsection 5.3.

Note that there are two potential sources of selection: selection into providers and selec-

tion into treatment. The distance between the patient and the hospital is an instrument

for hospital-surgeon pairs which addresses selection into providers. Since selection into

treatment is probably limited in this setting, I do not address it directly. As detailed in

Appendix A.1, treatment decisions are likely to be made prior to the referral to cardiac

surgeons, and alternative treatments are performed by distinct types of physicians. CABG

surgery is also usually performed in non-emergency settings. Therefore, there exists limited

scope for selection into treatment by surgeons or hospitals.

4 Estimated parameters

I summarize the estimated parameters from the empirical model. I first show that there

remains substantial variation in risk-adjusted survival across providers after classifying them

into grouped types using k -means clustering. I then investigate the sensibility of recovered

parameters. Risk-adjustment coefficients for patient observables are sensible and statistically

significant. Surgeon and hospital estimated effects are correlated with external measures of

quality. Finally, I find limited evidence for selection of patients into providers using patient

observables, suggesting that patient selection into providers may not play a major role for

my parameters of interest.

2077% of surgeries in the final sample are not emergent since patients have no emergency room expenses
in their hospital stay. Even in the case of emergencies, CABG surgery is performed on stable patients for
whom distance to the hospital was probably not critical. I investigate robustness of results by excluding
patients with emergency-room expenses, and find similar results.
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4.1 Grouped types of surgeons and hospitals

I group surgeons and hospitals using k -means clustering on average risk-adjusted survival

as delineated in Section 3.2. I impose five distinct groups for both hospitals and surgeons,

which is the greatest symmetric number of groups that allows me to observe patients for each

hospital-surgeon group interaction. I show that results are robust to alternative number of

groups in Subsection 5.3.

There exist a substantial amount of variation in survival across groups. Appendix Fig-

ure B.3 shows the difference between average observed and average predicted survival across

hospital and surgeons groups. The maximum difference is about 12 percentage points across

hospital groups, and about 20 percentage points across surgeon groups. Overall, the variance

across groups represents 84% of the variance in 30-day survival across individual providers,

for both surgeons and hospitals. Note that the ordering of the groups displayed in Appendix

Figure B.3 does not come from k -means clustering: the classification step only clusters hos-

pitals and surgeons into groups, but does not impose any meaningful ordering on them.

Groups are also of varying sizes. Importantly, note that the average risk-adjusted survival

for hospitals and surgeons still includes the combination of the hospital and surgeon effects

in Appendix Figure B.3.

Since the relevant source of variation comes from surgeons operating across multiple

hospitals, clustering hospitals into groups has a cost since surgeons now have to operate

across multiple hospital groups. While more than a third of surgeons were observed at more

than one hospital in Appendix Figure B.1, 30% of surgeons are observed at more than one

hospital group, as depicted in Appendix Figure B.2. Yet, the number of surgeons observed

at multiple hospital groups remains large.

4.2 Estimated parameters are sensible

Risk-adjustment parameters. The coefficients on patient observables for risk adjustment

are sensible. Appendix Table B.8 reports coefficients on patient covariates from estimating

equations (7) and (12). In both specifications, older and sicker patients are less likely to

survive 30 days after surgery. Women are also less likely to survive after CABG surgery,

consistent with several studies in the medical literature (Zwischenberger, Jawitz, and Lawton,

2021).

Correlations with external measures of quality. Estimated effects for surgeon and

hospital groups are correlated with external measures of quality of these providers. I find

evidence that better surgeons tend to have more experience in the procedure during the time

period, which is in line with the importance of learning-by-doing to determine physicians’
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skills outlined in the literature (Birkmeyer et al., 2013; Currie and MacLeod, 2017). As

reported in Panel 3a of Figure 3, higher surgeon-group estimates are positively correlated

with a surgeon’s recent experience in CABG procedures, measured in frequency and in

revenue in Medicare between 2012 and 2017. Surgeon group estimates are also positively

correlated with a surgeon’s recent experience in surgical procedures and overall procedures.21

There is no relationship with a surgeons’ tenured experience measured as the number of years

since the surgeon graduated from medical school, which is consistent with previous evidence

from Birkmeyer et al. (2013) notably. Note that these surgeon covariates only explain a small

fraction of the variation across fixed effects: the R2 of the regression including all covariates

remains below 0.01, as shown in Appendix Table B.9.

I also find that higher hospital-group effects are positively correlated with external mea-

sures of quality, such as CMS ratings and CMS 30-day risk-adjusted survival for six conditions

and procedures as reported in Panel 3b of Figure 3. Larger estimated hospital-group effects

are positively correlated with CMS five-star ratings, but this relationship is not statistically

significant. Larger estimated hospital-group effects are negatively correlated with CMS 30-

day risk-adjusted mortality measures. Note that these CMS measures include both surgeons

and hospital effects: this is why the relationship between the estimated hospital effects from

the empirical model described in equation (7) and the CMS risk-adjusted mortality measure

for CABG surgery is highly but not perfectly correlated. The R2 when including all CMS

quality measures amounts to about 0.05 for both specifications. I investigate correlations

with other hospital-level characteritics in Appendix Table B.10. None of these relationships

are statistically different from zero, and the R2 when including all covariates available for at

least 1,000 hospitals is below 0.01 for both specifications.

4.3 Limited evidence of patient selection using observables

To gain insights into the existence of patient selection into providers for CABG surgery, I ex-

amine the relationship between patient observables and the ranking of their provider groups.

I find no evidence of systematic adverse selection of patients into higher-survival providers

using patient observables. I use the predicted survival for patients net of provider effects, i.e.,

the predicted survival only driven by patient covariates, to examine systematic relationships

with the ranking of a surgeon or hospital group. As shown in Appendix Table B.11, there is

no systematic relationship between predicted survival based on patient covariates and their

provider rankings. If anything, higher-survival surgeons tend to operate on slightly health-

ier patients, but this is not statistically significant. Investigating each group separately in

21Correlations using yearly experience are similar; the correlation in these surgeons’ activity within Medi-
care year to year is above 0.8.
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Panel B.12 of Appendix Figure B.12, I find that both lowest and highest survival hospital

groups tend to treat predictably sicker patients based on patient observables. For surgeons,

the bottom two survival groups and the top survival group appear to treat predictably sicker

patients based on patient observables. The lowest provider groups appear to treat observably

sicker patients, which likely reflects their location as shown in Subsection 5.2.

Since surgeons tend to multi-home, they may be able to “triage” their patients across

hospitals, taking their sickest patients into their best available hospitals. However, as shown

in Appendix Figure B.4 and Appendix Table B.12, I find no systematic relationship between

patient covariates or predicted survival based on patient covariates and hospital rankings

within surgeons. The evidence is similar for hospitals: there is no evidence of adverse se-

lection into higher-survival surgeons within hospitals as shown in Appendix Figure B.5 and

Appendix Table B.12. If anything, there appear to be weak evidence of advantageous selec-

tion of patients into higher-survival surgeons within hospitals. This is more consistent with

surgeons taking their own patients to the hospital rather than hospitals assigning patients to

surgeons.22 Overall, patient selection into higher-survival providers appears to be minimal

in this setting.

5 Substitutability and sorting results

I find that surgeon and hospital quality are substitutes in the production function of survival

for CABG surgery: the return to allocating low-survival surgeons to high-survival hospitals

is greater than for high-survival surgeons. This finding is consistent with a mechanism of

“failure-to-rescue” emphasized in the medical literature, for which I find supportive evidence

using alternative patient outcomes. I find evidence of positive assortative matching, where

high-survival surgeons sort into high-survival hospitals. The current positive assortative

matching of surgeons across hospitals does not maximize aggregate survival: negative as-

sortative matching would increase aggregate survival while reducing dispersion in survival

across patients. I show the robustness of these results to allowing for selection on unobserv-

ables, to alternative number of groups in the classification, alternative classifications, and

alternative samples.

22This is indeed consistent with the medical literature. Surveys suggest that the surgeon is the main
driver of that decision, especially in the case of cardiovascular surgery (Wilson, Woloshin, and Schwartz,
2007). Since patients are referred to a cardiothoracic surgeons prior to surgery, surgeons and patients may
choose at which hospital to perform the surgery jointly.
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5.1 Surgeon and hospital quality are substitutes

To investigate the differential returns to allocating high- and low-survival surgeons to alterna-

tive hospitals, I report the average predicted 30-day survival for each hospital-surgeon group

interaction separately in Figure 4a, similarly to Figure 2 in Section 3.1. To rank surgeon

groups, I calculate the predicted 30-day risk-adjusted survival for each group, assuming each

interaction with a hospital group is equally likely. Similarly, I rank hospital groups using

the predicted 30-day risk-adjusted survival for each group, assuming each interaction with

a surgeon group is equally likely. The differential returns between high- and low-survival

surgeon groups to being allocated to higher-survival hospital groups can be inferred directly

from the differentials in slope of the average predicted survival across hospital groups for

each surgeon group. Equal slopes across surgeon groups would suggest that surgeon and hos-

pital quality do not depend on each other. A larger slope for higher-survival surgeon groups

would suggest complementarities between surgeon and hospital quality. Conversely, a larger

slope for lower-survival surgeon groups would suggest substitutability between surgeon and

hospital quality.

Surgeon and hospital quality are substitutes in the production function of 30-day survival

for CABG surgery. As indicated in Figure 4a, the predicted survival gains from allocating

surgeons to higher-survival hospital groups are larger for low-survival surgeon groups. I

estimate the slope for each surgeon group in Table 4. Lower-survival surgeons exhibit a

larger slope than high-survival surgeons in both specifications, and these differences are

statistically significant. These suggest that the magnitude of the substitutability between

surgeon and hospital quality may be quantitatively large. The production function of 30-

day survival for CABG is submodular: the cross-derivative in surgeon and hospital quality

is negative.23

The dispersion in predicted risk-adjusted survival across surgeon and hospital groups is

large. The standard deviation in surgeon types’ effects amounts to 2.6 percentage points

of 30-day survival. It is comparable to the standard deviation in the predicted survival

based on patients’ observables, which amounts to 2.3 percentage points of 30-day survival.

The standard deviation in hospital types’ effects is smaller but still large, amounting to 1.7

percentage points of 30-days survival.

Surgeons are key contributors to the variance in patient outcomes, but the value-added

of hospitals plays a crucial role for low-survival surgeons. High-survival surgeons are the

23In terms of functional form specification, this result rejects production functions for 30-day survival
where hospital and surgeon quality are additive, such as g(αl(j), ψk(h)) = αl(j) + ψk(h). However, it is
consistent with a logit production function for 30-day survival with additive hospital and surgeon group
fixed effects. The logit is submodular for probabilities above 0.5, and average 30-day survival probability is
0.95 for CABG.
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primary drivers of their patient outcomes: their patients tend to exhibit high survival rates

irrespective of the quality of the hospital they operate at. Among low-survival surgeons, the

quality of the hospital plays a crucial role in determining patient outcomes: the predicted

survival for their patients varies widely with the quality of the hospital they operate at.

Overall, high-survival surgeons tend to achieve high survival rates at all hospitals, and high-

survival hospitals tend to achieve high survival rates no matter what surgeon type is operating

on patients.

A model without interactions between surgeon and hospital groups fails to uncover the

crucial role of hospital quality for low-survival surgeons. To show this, I estimate a model

without interactions and decompose the relative contributions to the variance of surgeon

groups, hospital groups, and sorting as delineated in Appendix A.9. Table 5 and Appendix

Table B.13 shows results from this decomposition. The contribution of hospital groups

amounts to about 10% of the explained variance in 30-day survival net of covariates. The

contribution of surgeon groups is much larger than for hospitals in this decomposition, rep-

resenting up to six times the contribution of hospitals. The contribution of surgeons to the

variance in patient outcomes is also similar to the contribution of patients observables, as

shown in Appendix Table B.14. However, this leads to underestimate the contribution of

hospital quality for low-survival surgeons.

Mechanism: failure-to-rescue. While substitutability between surgeons and hospitals

in terms of patient survival may appear surprising at first glance, it seems consistent with

a mechanism highlighted in the medical literature: failure-to-rescue. “Failure-to-rescue”–

defined as the probability of death given complications–describes the inability of a hospital

to save patients from complications. This term was coined by Silber et al. (1992) who

showed that hospital-level complication measures tended to be less sensitive to hospital

characteristics than mortality measures. They found that failure-to-rescue measures were

highly correlated with both hospital-level mortality measures and hospital characteristics,

suggesting that low-mortality hospitals tend to achieve low-mortality outcomes through their

ability to rescue patients from complications.

Ghaferi, Birkmeyer, and Dimick (2009) extend these findings to six high-risk surgical

procedures in the entire Medicare population. In the case of CABG, they find a complication

rate of 24.2% for high risk-adjusted mortality hospitals versus 21.1% for low risk-adjusted

mortality hospitals. However, failure-to-rescue was 18.9% at high risk-adjusted mortality

hospitals versus 6.2% at low risk-adjusted mortality hospitals: a three-fold difference. Post-

operative complications need to be noticed quickly, and handled both correctly and rapidly.

Hospitals with greater ability to rescue patients from complications have been shown to have
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better nurse and physician staffing and better communication processes (Ghaferi, Birkmeyer,

and Dimick, 2009; Johnston et al., 2015; Ward et al., 2019).

In the context of a joint production function between surgeons and hospitals, high-survival

surgeons may be able to prevent a larger fraction of complications or make complications

less severe (Birkmeyer et al., 2013). Therefore, no matter at which hospital they perform

surgery, these surgeons’ patients recover normally and survive, with little role for the hospital.

However, low-survival surgeons may not be able to prevent as many complications: the

hospital at which they perform the surgery becomes crucial for patient survival, since it is

the hospital that will handle post-operative complications. In the context of CABG surgery,

hospitals potentially have a large role to play, since patients stay on average 10 days in the

hospital.

To gain insights in the plausibility of “failure-to-rescue” to be driving the susbstitutabiltiy

result, I run the model for two alternative patient outcomes, length of stay and hospital

spending per patient, but keeping the surgeon and hospital groups based on risk-adjusted

survival. Results are reported in Appendix Figure B.6. Low-survival surgeons tend to

exhibit longer length of stay and higher spending per patient, so that low-survival surgeons

also exhibit worse performances when examining alternative patient outcomes such as length

of stay or hospital spending.

The “failure-to-rescue” literature finds little variation in complication rates across hos-

pitals along with large variation in risk-adjusted survival. Note that both effects in this

literature include surgeon effects as well as sorting. I find that, when purged from surgeon

effects, high-survival hospitals tend to exhibit longer length of stay and higher spending per

patient. However, because high-survival surgeons achieve shorter length of stay and lower

spending and sort into high-survival hospitals, the average length of stay or spending across

hospital groups including hospital, surgeons and sorting effects is much more similar, as

shown in Appendix Table B.19. In addition, when examining how surgeon performances on

these other outcomes vary across hospital ranks, I find that lower-survival surgeons tend to

exhibit longer length of stay and higher spending in higher-survival hospitals compared to

lower-survival ones. This evidence is consistent with more intensive care given to patients of

low-survival surgeons at high-survival hospitals, which then translates into higher survival

for these patients. Overall, these findings are consistent with prior literature on physician

skill and “failure-to-rescue”.

Whether results for CABG surgery are generalizable to other surgeries, in particular in

terms of substitutability between surgeons and hospitals, remains to be investigated. Note

that the failure-to-rescue mechanism has been shown to arise for several other procedures

(Ghaferi, Birkmeyer, and Dimick, 2009). Additionally, most common surgical procedures
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are similar in processes to CABG surgery, with one surgeon in charge of performing the

surgery along with a surgical team and the hospital taking charge of pre- and post-operative

care. Hip and knee arthroplasties or heart-valve replacements, which also appear in the top

10 operating room procedures in aggregate cost, are such examples (McDermott and Liang,

2021). However, more novel or frontier surgeries may exhibit complementarities, especially

when a team of surgeons is involved in the surgery.

5.2 High-survival surgeons sort into high-survival hospitals

I find positive assortative matching where high-survival surgeons sort into high-survival

hospitals. Figure 4b describes the share of surgeries at a hospital group performed by each

surgeon group, where groups are described by their relative rankings. Surgeries at high-

survival hospitals are performed by high-survival surgeons, while surgeries at low-survival

hospitals are performed by low-survival surgeons. The positive assortative matching appears

to be relatively strong, with estimated correlations ranging between 0.4 and 0.79 across

specifications. Variance decompositions in Table 5 suggest that sorting explains between 20

and 40% of the explained variance in survival net of covariates.

Positive assortative matching at the national level partly reflects provider location de-

cisions across space. High-survival hospitals and surgeons tend to co-locate in space into

larger and higher-income regions. Examining the correlation between estimated provider

rankings and patient covariates, I find that high-survival providers tend to be located in

more populated and higher-income locations. As reported in Appendix Figure B.7, higher-

survival hospital and surgeon groups tend to treat older patients living in highly populated

high income ZIP codes. This is driven by the location of surgeons and hospitals rather than

selection of patients across providers: these statistically significant relationships disappear

when controlling for the hospital’s or surgeon’s HRR, as reported in Panel B.7b of Appendix

Figure B.7. This is consistent with Dingel et al. (2023), which shows that larger cities tend

to produce higher-quality medical services, notably through division of labor.

However, positive assortative matching at the national level is not entirely driven by

providers co-locating across space, since positive assortative matching is also substantial even

within regions. I compute the correlation between the estimated surgeon and hospital group

effects for the subset of patients treated in each specific HRR and report the distribution of

these correlations across HRRs in Appendix Figure B.8. I find that a substantial fraction

of HRRs exhibit strong positive assortative matching, suggesting that surgeon sorting is

substantial within regions too.

The current sorting of surgeons across hospitals does not maximize aggregate 30-day
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survival after CABG surgery. There exist larger returns from allocating low-survival surgeons

to high-survival hospitals compared to lower-survival surgeons. Yet, high-survival surgeons

sort into high-survival hospitals. This suggests that we could increase 30-day survival after

CABG surgery by reallocating low-survival surgeons to high-survival hospitals. I quantify

the impact of surgeon sorting across hospitals on aggregate patient outcomes using partial

equilibrium counterfactual reallocations in the next section.

5.3 Robustness

Addressing selection on unobservables: distance to hospitals as an excluded in-

strument. Since patients may select into surgeon-hospital pairs on characteristics that I

do not observe in the claims data, I control for selection on unobservables using a control

function approach as delineated in Section 3.3 as approach B. I use the distance between

the patient and the hospital ZIP codes as an instrument to identify patient demand. Pa-

tients tend to be treated at hospitals close to their ZIP code of residence, as depicted in

Appendix Figure B.9. 21% of surgeries are performed outside of the patient’s HRR.24 The

relationship between the chosen hospital and distance also appears log-linear, supporting the

functional form assumption in equation (8).

I examine whether the distance to the hospital is predictive of hospital choice in Panel B.10a

of Appendix Figure B.10. This figure depicts the relationship between the predicted proba-

bilities to choose a hospital from the hospital choice model depicted in equation (8) estimated

for each HRR separately and the distance between the patient ZIP code of residence and the

hospital ZIP code. The probability to choose a hospital within an HRR declines sharply with

distance to the hospital: the first stage of the distance instrument is strong. For this reason,

it is an instrument commonly used to model healthcare provider choice (for example Einav,

Finkelstein, and Williams (2016); Card, Fenizia, and Silver (2023); Einav, Finkelstein, and

Mahoney (2022)).

The key identifying assumption relies on the exclusion restriction: the distance to the

hospital should only have an impact on patient survival through the choice of hospital. Usual

balance tests–examining covariates balance with the instrument–cannot be straightforwardly

performed here since the instrument is the distance between the patient and every hospital

in her choice set. To evaluate the plausibility of the exclusion restriction assumption, I

perform two different exercises. First, I evaluate the stability of the relationship between

30-day survival and distance to the chosen hospital with and without patient observables.

24For the average HRR, 26% of surgeries are performed outside of it. There is substantial variation across
HRRs, with patients from more populous HRRs tending to remain in their HRR to receive CABG surgery.
It is 6% in Boston, MA versus 58% in Altoona, PA for example (Dingel et al., 2023).
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As shown in Appendix Table B.15, the coefficient on the logarithm of distance is relatively

stable with and without covariates, lending support for the exclusion restriction.

Second, I examine the stability of distance parameters in the demand model described

by equation (8) when allowing δh, the perceived quality from hospital h, to depend on

patients observables δh(Xi) as in Einav, Finkelstein, and Mahoney (2022). If the estimated

distance parameter τ̂ does not vary with the inclusion of patient covariates, allowing the

perceived quality of hospital h to depend on patient covariates does not change the impact

of distance on patient utility, which suggests that distance only impacts the choice of hospital.

Panel B.10b of Appendix Figure B.10 compares the estimated demand parameters for the

logarithm of distance without patient observables to including patient age, ZIP code income

per capita, and Charlson score in δh. The parameters are almost identical between the two

specifications, with a correlation above 0.99.25

Estimated parameters of the control function are consistent with the expected direction

of patient selection. The coefficients on patient observables for risk adjustment are sensible,

as shown in the second column of Appendix Table B.8. The estimated parameter for selec-

tion on gains ψ̂ is negative but remains non-statistically significant. Parameters ϕ̂s capturing

selection into specific hospitals are consistent with sicker patients selecting into better hos-

pitals in some cases, but also with healthier patients selecting into better hospital in other

cases, as reported in Appendix Figure B.11. While the former may be consistent with the

idea of physicians triaging their sicker patients into better hospitals, the latter is consistent

with healthier, and correlatedly wealthier, patients being able to sort into better hospitals

because they may have a lower distance elasticity or may be better informed (Dingel et al.,

2023) .

Control function parameters suggest adverse selection into higher-survival providers. I

examine the relationship between patient observables when including control function argu-

ments and provider rankings in Appendix Figure B.12. While there is no systematic relation-

ship between 30-day survival predicted only by patient observables and provider rankings,

adding the control function arguments suggests a negative relationship between 30-day sur-

vival predicted by patient observables and control function arguments and provider rankings,

which is statistically different from zero. While there is evidence of adverse selection into

both surgeon and hospital groups, adverse selection into higher-survival providers appears

to be stronger for surgeons. This indicates that the control function uncovers selection into

provider groups, where predictably sicker patients select into higher-ranked providers. The

25Including all patient observables only allows to estimate demand for 263 out of 305 HRRs because of
collinearity issues in patient observables at the option level. The distance parameters for the 263 HRRs
when including no versus all patient observables in δh are also very similar with a correlation over 0.85.
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exception remains for the lower surgeon and hospital groups, likely reflecting their location

as shown in Subsection 5.2.

Results are robust when using the control function approach. As shown in Appendix

Figure B.13, surgeon groups and hospitals groups are substitutes in the production function

of survival. Estimated slopes in column (2) of Appendix Table B.16 for each surgeon group

are similar to the selection on observables approach. Positive assortative matching is also

strong, with a similar correlation between hospital and surgeon group effects of 0.47. The

variance decomposition of a model without interactions between surgeon and hospital groups

also leads to similar conclusions. As reported in Table 5, the relative contribution of surgeon

groups compared to hospital groups would be even larger. Overall, the main results are not

altered by allowing for patient selection into providers on unobservables.26

Alternative production function. I also examine the robustness of the variance decom-

position to assuming an alternative production function. I use a logit production function,

which matches the substitutability finding, and decompose teh variance as delineated in Ap-

pendix A.9. Results are extremely similar with the logit production function, as shown in

Panel B of Table 5. The contribution of surgeons to the variance in predicted log-odds is

more than six times larger than the contribution of hospitals. Sorting is positive and strong,

with a correlation of 0.5, and represents about 25% of the variance in predicted log-odds.

Alternative number of groups. I investigate the robustness of results when varying the

number of surgeon and hospital groups in Panel C of Table 5. Variance decomposition results

remain similar when increasing the number of groups for hospitals, surgeons, or both. The

contribution of surgeon groups remains largely greater than hospital groups contribution,

and the sorting is positive and of similar magnitude. The substitutability result is also

robust to these alternative number of groups, as delineated in Appendix Table B.17.

Appendix Figure B.14 shows the results from the variance decomposition of the predicted

log-odds of 30-day survival, i.e., using a logit model, when varying the number of hospital

groups holding the number of surgeon groups fixed, when varying the number of surgeon

groups holding the number of hospital groups fixed, and when varying the number of surgeon

and hospital groups jointly. Results remain relatively stable across all alternative number of

groups.

Alternative classifications. I examine the robustness of results to using alternative clas-

26Note that, even though the sorting and substitutability results remain extremely similar, the control
function approach does capture additional selection into providers. Selection into providers likely does not
change the rankings of providers, crucial to my coefficients of interest here. This is illustrated in the right
panel of Appendix Figure B.12: with the control function approach, high-survival providers will be estimated
to be even better since sicker patients appear to select into them.
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sifications in Panel D of Table 5. First, I add conditional moments to the k -means clustering

for hospitals. In particular, I group hospitals using eight conditional moments: average 30-

day risk-adjusted survival for patients above and below the median Charlson score, above

and below the median ZIP code of residence income per capita and population, and for

males and females. Second, I use simple quintiles of risk-adjusted survival for hospitals and

surgeons. Third, I explore results when adding other outcomes to the k -means algorithm:

length of stay and hospital spending. Fourth, I use the noise-adjusted estimates for surgeon

and hospital effects as shown in Figure 1 and delineated in Appendix A.5 to group surgeons

and hospitals in the k -means algorithm.

Results remain robust to these alternative classifications. The contribution of surgeon

groups remains larger than hospitals. Sorting remains positive across classifications, with

a correlation between 0.4 and 0.58. Substitutability results are reported in Appendix Ta-

ble B.18. Surgeon and hospital quality are substitutes with these alternative classifications:

the slope is decreasing in the surgeon’s rank.

Alternative sample. I investigate robustness of results when excluding CABG surgery

performed in an emergency setting in Panel E of Table 5. Emergency CABG surgery may

be different from elective CABG surgery. Emergency CABG surgeries are performed by a

potentially different set of surgeons who are employed at the hospital. In addition, selec-

tion may be different for emergency CABG surgery compared to elective CABG surgery;

there may be differences in selection into treatment depending on hospitals’ comparative

advantages or the stability of the patient when reaching the ER. Consequently, I test for

the stability of my results when focusing on elective CABG surgery. I do so by excluding

surgeries associated with a non-zero emergency department expense in the hospital stay.

This excludes about 23% of observations in the main sample.

Results are robust to excluding emergency CABG surgery. As shown in Panel E of

Table 5, the relative contribution of surgeon groups compared to hospital groups is similar,

and the sorting is positive and of similar magnitude. Column (3) of Appendix Table B.16

also indicates substitutability between surgeon and hospital quality.

Other outcomes. I examine whether results are similar when looking at alternative pa-

tient outcomes for both grouping and main outcome in Panel F of Table 5. Length of stay

and hospital spending are alternative measures of surgeon and hospital performances, and

we expect them to be negatively correlated with survival rates for surgeons based on prior

literature (Birkmeyer et al., 2013): high-survival surgeons would achieve shorter length of

stay with lower spending for patients. For both additional outcomes, conclusions are sim-
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ilar.27 Surgeon value-added is a key driver of variation in patient outcomes, and positive

assortative matching is strong. As expected, hospitals tend to have more of a role for in

driving the variance in hospital spending compared to other outcomes, since hospitals likely

play a major role in determining the intensity of care and monitoring post-surgery.

I also estimate sorting using an alternative method altogether on these other outcomes,

namely using individual fixed effects and the leave-out correction from Kline, Saggio, and

Sølvsten (2020). This approach excludes interactions between surgeon and hospital fixed ef-

fects. These results are reported in Appendix Table B.20. As expected, the plug-in estimate

as in Abowd, Kramarz, and Margolis (1999), i.e. the covariance of estimated individual

surgeon and hospital fixed effects, is negative. Recent work has demonstrated the sensi-

tivity of these estimates to the incidental parameter problem and shown the importance

of bias correction when evaluating worker sorting across firms using wages (Kline, Saggio,

and Sølvsten, 2020; Bonhomme et al., 2023). When using the leave-out correction in my

context, the estimated covariance becomes positive and points to strong positive assortative

matching. These results are consistent with results using the grouped fixed effect estima-

tor without interactions in Panel F of Table 5. Overall, these results further support the

existence of positive assortative matching.

The substitutability result is also robust to using these alternative outcomes, as delineated

in Appendix Table B.21. For length of stay and hospital spending, better performing provider

exhibit shorter length of stay and lower hospital spending so the slopes are now negative

across hospital groups. High-length of stay or high-spending surgeons, i.e. low performing

surgeons, exhibit more negative slopes across hospital types. The performances of low-

performing surgeons improve more than for high-performing surgeons when they move to

a higher-performance hospital group, hence identifying substitutability for these alternative

outcomes. These slopes increase as surgeon groups become “better” in the outcome of

interest, with one exception for surgeon ranks 2 and 3 for length of stay.

27Note that there are many dimensions of skill and quality, and I find that they do not perfectly align
across these outcomes. In particular, the correlation between the fixed effects when using survival versus
length of stay or spending are negative for both surgeons and hospitals, so that high-survival providers tend
to be short length of stay and low spending. However, these correlations remain small: they are about -0.03
for hospitals and between -0.07 and -0.12 for surgeons. These results are consistent with the failure-to-rescue
mechanism illustrated in Appendix Table B.19. When the groups remain fixed using survival, high-survival
hospitals tend to be associated with longer length of stay and spending while high-survival surgeons exhibit
shorter length of stay and lower spending fixed effects.
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6 Counterfactual allocations of surgeons to hospitals

The existence of strong positive assortative matching when the production function is sub-

modular, i.e., when surgeons and hospitals are substitutes, suggests that the current allo-

cation of surgeons to hospitals is worse than random. The strength of the substitutability

determines the impact of alternative allocations of surgeons to hospitals on aggregate patient

survival. Using partial equilibrium counterfactual exercises, I show that surgeon sorting has

a large impact on aggregate patient survival from CABG surgery. In particular, reallocating

low-survival surgeons to high-survival hospitals would decrease average mortality by 25%. I

then investigate how much of the reduction in CABG 30-day mortality can be achieved by

reallocating surgeons across hospital types within regions. I find that only reallocating sur-

geons across hospitals within HRRs achieves more than 50% of the benefits from a national

reallocation.

6.1 Surgeon sorting has a large impact on aggregate survival

To examine the impact of surgeon sorting on aggregate patient survival, I simulate aggregate

30-day mortality from CABG surgery under two alternative allocations of surgeons: random

sorting of surgeons to hospital groups and negative assortative matching. The main goal of

this exercise is to evaluate the strength of the substitutability between surgeons and hospitals

in the production function. It does not intend to give an exact estimate of the impact of

a particular policy reallocating surgeons across hospitals, to solve for the optimal policy,

nor to capture welfare. This exercise assumes away general equilibrium effects: I assume

away spillover effects or learning from coworkers, for example. Surgeon and hospital spatial

locations are also assumed to be fixed. I only focus on aggregate patient survival, which is

only one of the many dimensions of welfare.

I first focus on reallocations where surgeons are reallocated to hospitals nationally, irre-

spective of the patient’s or surgeon’s initial location. For the random reallocation, I randomly

assign patient-hospital pairs to surgeon groups, keeping the number of surgeries performed

by each surgeon group constant.28 For the negative assortative matching reallocation, I re-

allocate surgeons to patient-hospital pairs so that surgeries at the lowest-survival hospital

group are performed by surgeons from the highest survival group until all surgeries available

at this hospital group are taken or until all surgeries performed by the highest-surgeon group

are taken, and I move to the next group. I do so until all surgeries are assigned to a sur-

28Note that reallocating patients across surgeon and/or hospital groups would have no impact on aggregate
survival since I assume perfect separability between surgeon and hospital value-added and patient observables
and unobservables in equations (7) and (12).

33



geon and hospital group. Across all simulations, the total number of surgeries performed by

each group of surgeon and each group of hospital are identical, but the number of surgeries

performed by each surgeon-hospital group pair differs. I next predict 30-day mortality using

estimated parameters from equation (7) using the new assigned surgeon and hospital groups.

As reported in Table 6, randomly reallocating patient-surgeon pairs to hospital types

nationally decreases average 30-day mortality by about 3 deaths per thousand patients, a

7% decrease in 30-day mortality compared to the current positive sorting. It also reduces

the dispersion in 30-day mortality across patients by 8%. Consistent with the existence

of substitutability between surgeons and hospitals, moving away from positive assortative

matching is beneficial for patients in terms of 30-day mortality.

The magnitude of these changes is large. To put these numbers in perspective, assuming

that 80,000 patients undergo CABG surgery every year within Medicare, this corresponds

to about 240 lives saved per year. These gains in terms of lower 30-day mortality for CABG

surgery would be even larger when taking into account non-Medicare patients. Once again,

these numbers should be taken with caution, since they assume away general equilibrium

effects. However, they indicate that the substitutability of surgeons and hospitals in the

production function of survival for CABG surgery is quantitatively significant.

Implementing the negative assortative matching allocation leads to a reduction in average

30-day mortality that is more than three times larger than that of the random reallocation.

Simulation results suggest that about 10 deaths per thousand patients would be averted every

year, corresponding to a 26% decrease in 30-day mortality compared to the current positive

sorting. Furthermore, the dispersion in 30-day mortality across patients would be reduced by

31% compared to the current sorting. Assuming 80,000 Medicare patients undergo CABG

surgery every year, this corresponds to about 800 lives saved per year within Medicare.

There are three main takeaways from this simple reallocation exercise. First, the produc-

tion function of 30-day survival for CABG surgery exhibits a strong substitutability between

surgeon and hospital quality. This indicates that the allocation of surgeons to hospitals has

large consequences for aggregate patient survival and its dispersion. This also suggests that

the current allocation of surgeons to hospitals, exhibiting positive assortative matching, leads

to a large loss in terms of patient lives. While this exercise cannot give exact estimates of

the impact of alternative policies that would reallocate surgeons across hospitals, it indicates

that gains from such policies may be large and beneficial to patients, and may consequently

be fruitful avenues for policy.

Second, these results emphasize the importance of examining the existence of complemen-

tarity or substitutability when evaluating sorting of workers to firms. Traditional two-way

fixed-effects models on log wages without interactions assume complementarities in level and
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separability in logs (Abowd, Kramarz, and Margolis, 1999; Card, Heining, and Kline, 2013).

Recent work has emphasized the importance of the production function, and in particular

the existence of complementarities, to evaluate sorting patterns (Bonhomme, Lamadon, and

Manresa, 2019; Adhvaryu et al., 2020).29 Interestingly, my results are consistent with Bon-

homme, Lamadon, and Manresa (2019), who also find evidence for substitutability in the

presence of strong positive assortative matching for worker sorting across firms on wages. In

their context, the substitutability between workers and firms did not appear to be quantita-

tively large. In my setting, I find that it is, on the contrary, quantitatively significant.

Finally, note that all regions do not gain from these reallocations equally. As depicted

in Panel 5a of Figure 5, smaller regions in terms of total population tend to face greater

mortality reductions with these reallocations. As delineated in Section 5, high-survival

surgeons and hospitals tend to co-locate in more populated regions. Furthermore, more

populated regions tend to exhibit lower baseline predicted mortality rate, as depicted in the

first column of Table 7. However, this relationship becomes almost zero in column (2) with

random matching and positive in column (4) with negative matching, likely resulting from

reallocating high-survival surgeons from high-population areas to low-survival hospitals in

low-population areas. Consequently, reallocating surgeons nationally not only decreases ag-

gregate mortality, but it also decreases or reverses the inequality in mortality rates across

regions over the population gradient.

6.2 Do we have to move surgeons across space?

Do high-survival surgeons and hospitals sort into larger cities? Is the national sorting of

surgeons across hospitals due to the spatial sorting of providers? More specialized doctors

locate in larger cities (Newhouse et al., 1982a,b; Baumgardner, 1988; Rosenthal, Zaslavsky,

and Newhouse, 2005; Dingel et al., 2023). However, as indicated in Section 5, most HRRs

exhibit positive assortative matching of surgeons across hospital groups. This suggests that

not all of the variation in provider types is due to sorting across space, at least within the

cardiac surgery specialty. To further investigate this question, I compare results from the

national reallocation exercises to reallocation exercises within HRRs.

In this exercise, I reallocate surgeon types operating in an HRR to alternative hospitals

within the same HRR. Patients will be treated in the same HRR, and surgeon types will

operate in the same HRR as in the data. Patient-hospital pairs are allocated to surgeon

29Adhvaryu et al. (2020) investigate the sorting of workers to managers within a firm using a direct
measure of output. They find negative assortative matching of workers to managers while they cannot reject
complementarities between the productivity of workers and managers in the production function. Also
using direct measures of output, Metcalfe, Sollaci, and Syverson (2023) find evidence of negative assortative
matching within the firm, where better managers tend to be allocated to worse-performing retail stores.
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groups based on the number of surgeries performed by this surgeon group at hospitals within

the same HRR. This ensures that each surgeon group performs the same number of surgeries

within an HRR as in the initial data.

Results reported in Table 6 indicate that a random reallocation within HRRs produces

a national correlation between surgeon and hospital type fixed effect of about 0.19. The

difference between the correlation when allowing for a national reallocation, amounting to

zero, and 0.19 suggests that there exists some non-negligible sorting of providers across space.

However, only reallocating surgeons to hospital types within HRRs reduced the correlation

from 0.48 in the current allocation to 0.19, confirming that not all of the variation is due to

sorting of providers across space.

Randomly reallocating surgeons within HRRs leads to a decrease of about 1.6 deaths

per thousand patients, representing 55% of the mortality gains from a national reallocation.

When imposing negative assortative matching, the reallocation leads to about 5 deaths per

thousand patients, representing 51% of the gains from a national reallocation. Reductions in

the standard deviation follow similar patterns, with between 54% and 65% of the reduction

in inequality from a national reallocation being achieved by reallocations within HRRs.

In contrast to results from reallocations across regions, regions that benefit the most

from reallocations within regions are the more populated ones as shown in Panel 5b of

Figure 5. Consequently, the relationship between predicted mortality and HRR population

becomes even stronger than at baseline, as shown in columns (3) and (5) of Table 7. More

populated regions tend to attract high-survival providers, but they also exhibit the full

range of providers, from low- to high-survival, so that they offer more scope for gains from

reallocations of surgeons across hospitals.30 Therefore, while substantial mortality gains

can be achieved in aggregate from reallocating surgeons across hospitals within HRRs, such

reallocations would tend to exacerbate differences in mortality across HRRs in favor of more

populated regions.

This reallocation exercise has interesting consequences for healthcare policy. Reallocating

surgeons across regions is likely to offer very different trade-offs and costs than reallocating

surgeons within regions. Dingel et al. (2023) emphasize proximity-concentration trade-offs

when reallocating medical services production across space. Relocating doctors closer to

patients in rural areas decreases travel costs for these patients but foregoes the benefits

from region-level economies of scale. Similar trade-offs arise here in the context of cardiac

surgeons. However, more than 50% of the impact on patient survival is unrelated to provider

30More populated HRRs tend to include more alternative surgeon and hospital groups on average. They
also display a higher average ranking for surgeons, while the relationship with hospitals rankings is positive
but not statistically significant.
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location decisions across space, in the case of CABG surgery. This suggests that incentivizing

surgeons to perform surgeries at different hospitals without requiring them to move to a

different region may be a fruitful avenue for policy, especially as surgeons already tend to

“multi-home.” It can also complement potential spatial health policies. Reallocations of

surgeons within regions increase inequality between regions, but policies facilitating patient

travel to high-survival regions may alleviate inequality in patient access to high-survival

providers.

6.3 Discussion: payments in healthcare

These results highlight that the current sorting of surgeons across hospitals does not maxi-

mize aggregate patient outcomes. This may be surprising since hospitals and surgeons have

strong incentives to maximize their patients’ outcomes. This is particularly true for CABG

surgery, since patient outcomes for this surgery are publicly reported. Why would the sorting

of surgeons across hospitals be worse than random?

The goal of this paper is not to offer a comprehensive model of surgeon sorting, so the

sorting model used is restricted to patient survival. Yet, surgeons are likely to sort on many

other dimensions than patient survival. Surgeons may sort into hospitals based on “prestige,”

to attract more patients, for example. Using external measures of quality for hospitals in

Subsection 4.2 indicates that high-survival hospitals tend to be high CMS ratings hospitals.

Other reasons for positive assortative matching in the absence of complementarities may

include better amenities at higher-survival hospitals. Bloom et al. (2020) and Munoz and

Otero (2023) have shown that better management practices translate into better patient

outcomes, which probably also translates into better work amenities for surgeons such as

ease of scheduling, better technology, or higher-quality peers.

How to incentivize high-survival surgeons to practice in lower-survival hospitals? It is

likely difficult for low-survival hospitals to attract high-survival surgeons. Hospitals cannot

offer financial incentives to surgeons if they are not employed by the hospital. The federal

anti-kickback statute prohibits hospitals from paying doctors for referrals, with the goal of

removing financial incentives from doctors’ clinical decisions. This means that low-survival

hospitals will not be able to offer higher compensations to attract high-survival surgeons that

they do not employ. In addition, existing policies aiming at incentivizing hospital quality

actually penalize low-quality hospitals that do not meet minimum quality standards, like

the CMS Hospital Readmission Reduction Program. This makes it even harder for such

hospitals to attract high-survival surgeons with higher salaried compensation.

In the current fee-for-service system in Medicare, surgeons and hospitals are paid sep-
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arately a predetermined amount. With bundled payment, the current situation could be

exacerbated since high-survival hospitals may capture larger net payments. A potential

avenue to incentivize high-survival surgeons to practice at low-survival hospitals would be

reimbursements based on value-added. This idea is not new: it has notably been proposed in

the context of teacher payments in the education literature (Hoxby, 2014).31 The value-added

of high-survival surgeons being much larger at low-survival hospitals than at high-survival

ones, they will then have incentives to take some of their patients to lower-survival hospitals

with little impact on their patients’ survival. A similar argument can be made for hospitals,

paying them proportionally to their value-added to the operating surgeon. Obviously, value-

added payments are extremely hard to put in place since value-added is hard to compute.

Furthermore, more work is needed to evaluate general equilibrium effects of such realloca-

tions of doctors across hospitals, in particular taking into account learning and spillovers

across physicians.

7 Conclusion

Healthcare providers care jointly for their patients. Substantial variation across physicians

and hospitals has been documented in the literature, yet little was known about this joint

production process and its consequences for our understanding of provider quality. This

paper directly examines the joint production function of patient survival between surgeons

and hospitals in the context of CABG surgery, and its consequences for aggregate patient

outcomes.

This paper highlights the importance of interactions between the quality of different

provider types in the production function of patient outcomes. In the context of survival

from CABG surgery, I find that surgeon and hospital quality are substitutes, so that the

return to allocating low-survival surgeons to high-survival hospitals is larger than for high-

survival surgeons. The value-added of high-survival surgeons is larger at low-survival hospi-

tals, and the value-added of high-survival hospitals is larger for low-survival surgeons. These

findings relate the economics of the production technology to well-known facts in the medical

literature related to “failure-to-rescue” mechanisms. High-survival hospitals tend to achieve

higher survival rates by saving patients from complications. At the same time, higher-skill

surgeons tend to achieve lower complication rates.

This paper also provides evidence of positive assortative matching of surgeons into hos-

31The education literature has long recognized the importance of teacher and school value-added and
their interactions, or match effects, for student outcomes. Jackson (2013) notably estimates that these
match effects account for about a quarter of teacher quality.
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pitals. These findings complement empirical evidence from the labor literature investigating

worker sorting across firms using worker earnings (Abowd, Kramarz, and Margolis, 1999;

Card, Heining, and Kline, 2013; Kline, Saggio, and Sølvsten, 2020; Bonhomme, Lamadon,

and Manresa, 2022). I estimate sorting in a specific yet important labor market using a

direct measure of output: patient survival. I also document a situation where surgeon sort-

ing does not maximize aggregate outcomes: surgeon and hospital quality are substitutes,

but high-survival surgeons sort into high-survival hospitals. Surgeon sorting is worse than

random for aggregate patient survival. I also show that positive assortative matching at the

national level is partially driven by providers co-locating across space in the U.S. Yet, there

remain substantial positive assortative matching within regions.

This detailed quantification of the joint production function between surgeons and hospi-

tals at the micro-level has large consequences at the aggregate level for patient outcomes. I

use partial equilibrium reallocation exercises to quantify the magnitude of the substitutabil-

ity between surgeon and hospital quality. Simply randomly reallocating surgeons across

hospitals would save about 200 lives a year within Medicare. Implementing the negative as-

sortative matching allocation increases this number to 800 lives saved a year within Medicare.

This implies that surgeon sorting has large consequences for aggregate patient outcomes. I

also use these reallocation exercises to explore how much of the positive assortative matching

result at the national level is driven by providers sorting across space. I estimate that at

least 50% of the gains from national reallocations could be achieved by reallocating surgeons

to hospitals within regions. This suggests that reallocating surgeons within regions may be

a fruitful avenue for policy.

In outlining the importance of understanding the production function of hospitals for

aggregate outcomes, this paper is in line with the literature showing the importance of en-

dogenizing firms’ internal organization to explain aggregate market outcomes. Adenbaum

(2022) emphasizes the role of labor in explaining variation in firms’ TFPs, by estimating the

role for worker productivity and endogeneous specialization to represent about 75% of the

variance in firm-level TFP. Freund (2022) estimates that the rise in coworker complemen-

tarities explains a quarter to a half of the rise in wage inequality in Germany. Taking into

account team formation within hospitals, as well as co-workers complementarities within the

hospital, which includes surgeons, hospitals, nurses, and nonmedical staff, is likely to provide

fruitful insights into the determinants of hospital productivity.
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Figure 1: Motivation: large variation in risk-adjusted survival across providers and sorting

(a) Distribution of 30-day risk-adjusted survival
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(b) Suggestive evidence of positive assortative matching
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Notes: Panel 1a depicts the distribution of average risk-adjusted 30-day survival (RASR) across surgeons and hospitals, weighted by the number of
patients at each provider. These averages are adjusted for measurement error using empirical Bayes shrinkage as detailed in Appendix A.5, which
“shrinks” noisily estimated averages toward the mean. Risk-adjustment is performed by predicting 30-day survival using a logit model as delineated
in Appendix A.3. Panel 1b describes the percentage of CABG surgeries performed by each surgeon quartile at hospitals in the corresponding CMS
star rating. Surgeons are grouped into quartiles using their average yearly CABG surgery volume, where each quartile includes the same number
of surgeons. The CMS five-star ratings are obtained from the CMS Hospital General Information and Complications and Deaths datasets for 2017.
Surgeons’ Medicare CABG frequency is calculated as a yearly average across 2012 to 2017 in the CMS Medicare Physician & Other Practitioners file.
Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable
Files. Years 2011 to 2017 are included.
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Figure 2: Impact of alternative assumptions on interactions between surgeon and hospital quality on predicted survival

(a) Perfectly separable
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(c) Substitutes
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Notes: These figures illustrate the impact of alternative assumptions on the interactions between surgeon and hospital quality on predicted patient
survival across providers. Panel 2a describes the case where surgeons and hospitals are perfectly separable. In this case, the slope across hospitals
types bj is equal for all surgeons: the return to allocating surgeons to high-ψh hospitals is independent of the surgeon. Panel 2b illustrates the case
where surgeons and hospitals are complements. The slope across hospital types is greater for high-αj surgeons: the return to allocating surgeons to
high-ψh hospitals is greater for high-αj surgeons than for lower-αj ones. Panel 2c details the substitutability case. Now the slope across hospital
types is greater for low-αj surgeons: the return to allocating surgeons to high-ψh hospitals is greater for low-αj surgeons than for higher-αj ones.
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Figure 3: Correlation of estimated provider group effects with external measures of skill or quality

(a) Surgeons
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Notes: These graphs report the point estimates and 95% confidence intervals from regression of the provider-group estimated effects on provider-
level covariates. Panel 3a shows that surgeon-group effects are positively correlated with surgeons experience in performing CABG within Medicare,
measured in revenue or frequency, with surgeons’ surgical and overall experience, measured as surgical and total Medicare revenues respectively. These
relationships are statistically significant. The relationship with tenured experience - measured as the number of years since medical school graduation -
is not statistically different from zero. Estimated group fixed effects are in percentage points of survival while surgeon-level covariates are standardized,
so that coefficients indicate the percentage point impact on 30-day survival of one standard deviation increase in the surgeon covariates. The R2 of
the regression including all surgeon covariates amount to less than 0.01. The surgeon-group estimates include the fixed effects with interactions as
α̂l +

1
K

∑
k κ̂lk from equation (7), i.e., weighting each interaction with each hospital group equally. Panel 3b shows that hospital-group estimates

are positively correlated with hospital CMS five-star ratings but this is not statistically significant. They are negatively correlated with 30-day risk-
adjusted mortality for six conditions publicly reported by CMS as part of the five-star rating, with stronger correlations for heart-related diagnoses.
Estimated group fixed effects and mortality measures are in percentage points. The R2 of the regression including all CMS quality measures amount
to less about 0.045. The hospital-group estimates include the fixed effects with interactions as α̂k + 1

L

∑
l κ̂lk from equation (7), i.e., weighting each

interaction with each surgeon group equally. Surgeons’ Medicare revenues and frequency are calculated for years 2012 to 2017 from the CMS Medicare
Physician & Other Practitioners file. Years since medical school graduation is calculated as of 2010 based on the medical school graduation in the
CMS Doctors and Clinicians dataset. The CMS five-star ratings and mortality measures are obtained from the CMS Hospital General Information
and Complications and Deaths datasets for 2017. Confidence intervals displayed are at 95% constructed using robust standard errors.
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Figure 4: Substitutability and sorting

(a) Substitutability
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(b) Sorting
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Notes: These graphs show results when assuming selection on observables as delineated in equation (7). Panel 4a displays the predicted 30-day
survival for the average patient in the data across hospital and surgeon groups where groups are described by their relative rankings. The production
function of survival appears to be sub-modular: the return of allocating low-survival surgeons to high-survival hospitals is greater than for high-survival
surgeons. The slopes of fitted lines across hospital rankings for each surgeon group are reported in Table 4: the slope for lower-rank surgeons is
greater than for high-survival surgeons. Marker sizes are proportional to the number of surgeries performed by each hospital-surgeon group. Panel 4b
describes the percentage of surgeries performed by each surgeon group at each hospital group, where groups are described by their relative rankings.
Surgeries at high-survival hospitals tend to be performed by high-survival surgeons: high-survival surgeons sort into high-survival hospitals. Surgeon
groups are ranked based on the predicted 30-day risk-adjusted survival for each group assuming each interaction with a hospital group is equally
likely. Similarly, hospital groups are ranked using the predicted 30-day risk-adjusted survival for each group assuming each interaction with a surgeon
group is equally likely. Groups are formed using k -means clustering on average risk-adjusted survival as delineated in Section 3. Professional fees
come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years
2011 to 2017 are included.
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Figure 5: Regions benefit differently from reallocations as a function of population

(a) Reallocations across HRRs
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(b) Reallocations within HRRs
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Notes: These graphs illustrate the relationship between average mortality gains from partial equilibrium reallocation exercises where surgeons are
reallocated to alternative types of hospitals and region size measured with total population. The graphs summarize these relationships using binned
scatter plots with twenty equally sized bins. Two types of reallocations are reported: random reallocation and negative assortative matching. Patients
and surgeons are reallocated either nationally in Panel 5a or within hospital HRRs only in Panel 5b. When surgeons are reallocated nationally, smaller
HRRs gain more on average from reallocations than larger HRRs, for both random and negative assortative reallocations, with a steeper gradient with
negative assortative matching. When surgeons are reallocated within their regions, larger HRRs gain more from reallocations than smaller HRRs, and
this relationship is stronger for negative assortative reallocations. Overall, whether surgeons are reallocated across versus within regions will benefit
different regions; in the first case, inequality in mortality across regions would disappear or favor smaller regions while in the later case, inequality
across regions would increase in favor of larger regions. In the random reallocation, patient-hospital pairs are randomly reallocated to surgeon groups
conditional on the number of surgeries available per surgeon groups nationally. For the negative assortative matching reallocation, surgeons from
the highest-survival group are allocated to the lowest-survival hospital group until no surgeries are available at this hospital group, and so on. For
reallocations within HRRs, surgeon groups operating in an HRR are reallocated to alternative hospital groups within the same HRR. 30-day mortality
is predicted using parameter estimates from equation (7). Results per region are averaged over 100 simulations, and bootstrap standard errors are
in parentheses (computed using 200 replications). Note that results will be identical across simulations for the case of negative assortative matching
reallocations within regions. The definition of hospital referral regions (HRRs) follows the definition of the Dartmouth Atlas Project. Professional
fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years
2011 to 2017 are included.
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Table 1: Exclusions to final sample

Number of Number of Number of Number of
Sample observations patients surgeons hospitals

CABG professional fee claims 154,655 122,531 3,815 -
(100%) (100%) (100%) -

Matched professional fees to hospitals stays 139,166 115,925 3,780 1,327
(90%) (95%) (99%) (100%)

Excluding inconsistent specialties 135,818 114,320 3,508 1,321
(88%) (93%) (92%) (100%)

Exclude surgeries performed end of 2010 135,701 114,220 3,508 1,321
(88%) (93%) (92%) (100%)

Exclude less than five surgeries per surgeon at a hospital 130,443 110,981 2,904 1,174
(84%) (91%) (76%) (88%)

Exclude patients or providers located outside of mainland U.S. 130,075 110,672 2,892 1,167
or in an HRR where all patients chose a hospital outside the HRR (84%) (90%) (76%) (88%)

Notes: Percentages in parenthesis are expressed as a percentage of the number in the initial CABG sample in the first line. Professional fee claims for
coronary artery bypass graft (CABG) surgery are isolated using healthcare common procedure coding system (HCPCS) codes 33510-33516, 33533-
33536, and 33517-33523 in the claim line file. The operating surgeon is identified as the performing provider for the claim line relative to a CABG
HCPCS code. The professional fee claims are matched to hospital stays if the professional fee claim date falls within the admission and discharge
date of a unique hospital stay for the patient. The total number of observations is larger than the total number of patients because some patients
undergo CABG surgery multiple times in the final sample time period and because some surgeries are linked to multiple performing physicians in the
professional claim lines. 602 patients received CABG surgery more than once in the 2011-2017 final sample. 16.3% of surgeries exhibit more than one
performing surgeon in the final sample. Physician specialties and hospital ZIP codes are identified by linking the provider’s unique national provider
identifier (NPI) to the National Plan and Provider Enumeration System (NPPES) data. Included primary specialties as defined in the NPPES are
thoracic surgery, surgery, specialist, vascular surgery, cardiovascular disease, transplant surgery, vascular specialist, and surgical critical care. Patient
and hospital ZIP codes are linked to hospital referral regions (HRRs) as defined by the Dartmouth Atlas Project. Professional fees come from the
Medicare 20% carrier Research Identifiable Files, hospital stays from the Medicare MedPAR Research Identifiable Files, and beneficiary information
from the Medicare Beneficiary Research Identifiable Files. Years 2011 to 2017 are included.
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Table 2: Patients summary statistics

Standard
Mean Deviation

Socio-demographics & health
Age

Less than 65 0.11 0.31
[65;70) 0.24 0.43
[70;75) 0.25 0.43
[75;80) 0.21 0.41
[80;85) 0.14 0.34
[85;90) 0.05 0.21
[90;95) 0.00 0.07
[95;100) 0.00 0.01
More than 100 0.00 0.00

Female 0.30 0.46
Dual eligible (Medicaid + Medicare) 0.17 0.38
Income per capita (USD, x1,000) 33.39 13.93
ZIP code population (x1,000) 25.27 18.97
End Stage Renal Disease 0.05 0.21
Charlson score 3.41 2.66

Comorbidities
Acute myocardial infarction 0.40 0.49
Congestive heart failure 0.42 0.49
Peripheral vascular disease 0.26 0.44
Cerebrovascular disease 0.40 0.49
Chronic obstructive pulmonary disease 0.30 0.46

Outcomes
30-days mortality 0.04 0.20
60-days mortality 0.05 0.22
Length of stay 10.32 7.50

N 110,672

Notes: Patient residential ZIP codes are mapped to income per capita and total population using the
American Community Survey (ACS) 2015-2019 from the U.S. Census Bureau. The Charlson score and
comorbidities are obtained using all diagnoses appearing in inpatient, outpatient, and professional fee claims
up to twelve months prior to the surgery. Professional fees come from the Medicare 20% carrier Research
Identifiable Files, hospital stays from the Medicare MedPAR Research Identifiable Files, and beneficiary
information from the Medicare Beneficiary Research Identifiable Files. Years 2011 to 2017 are included.
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Table 3: Suggestive evidence of non-perfect separability between surgeon skill and hospital quality

(1) (2) (3)
Surgeon: CABG survival (EB) Surgeon: CABG volume

CABG survival (EB) Hospital: AMI survival Hospital: AMI survival

Surgeon skill proxy µ1 0.115 0.144 0.005
(0.004) (0.003) (0.003)

Hospital quality proxy µ2 0.037 0.002 0.028
(0.004) (0.003) (0.003)

Interaction surgeon-hospital proxies µ3 -0.013 -0.007 0.000
(0.003) (0.003) (0.003)

Observations 126,820 126,820 126,820
R-squared 0.035 0.033 0.013
Patient covariates X X X

Notes: This table reports the estimated parameters from equation (1) using alternative proxies for surgeon skill (Qj) and hospital quality (Qh).
Such proxies include the noise-adjusted hospital and surgeon fixed effects reported in Figure 1 and computed as delineated in Appendix A.5. These
estimates use empirical Bayes shrinkage to adjust for measurement error, and are risk-adjusted using predicted 30-day survival using a logit model as
delineated in Appendix A.3. Additional proxies include AMI 30-day survival computed by CMS for hospitals, and surgeons’ average yearly CABG
volume in Medicare. In the first two specifications, µ̂3 is negative and statistically significant: we can reject that the production function of survival
is perfectly separable in surgeon skill and hospital quality. This also suggests that surgeon skill and hospital quality are substitutes in survival. We
cannot reject that µ̂3 is zero in the last specification, but yearly CABG volume within Medicare is a much less precise signal for surgeon skill, as
indicated by the estimate for µ1 that is also indistinguishable from zero. The AMI survival measure is obtained from the CMS Hospital General
Information and Complications and Deaths datasets for 2017. Surgeons’ Medicare CABG frequency is calculated as a yearly average across 2012 to
2017 in the CMS Medicare Physician & Other Practitioners file. Professional fees come from the Medicare 20% carrier Research Identifiable Files,
and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included. Standard errors in parenthesis are robust
standard errors.
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Table 4: Greater returns from higher-hospital group for lower-survival surgeon groups (sub-
stitutability)

Predicted survival

Slope surgeon rank 1 (worst) 1.85
(1.11)

Slope surgeon rank 2 1.58
(0.40)

Slope surgeon rank 3 1.37
(0.30)

Slope surgeon rank 4 0.84
(0.20)

Slope surgeon rank 5 (best) 0.15
(0.06)

p-value: equality of slopes <0.01
p-value: slope rank 5 ≥ 1 <0.01
p-value: slope rank 4 ≥ 2 <0.01

Observations 130,075
Surgeon type FEs X

Notes: This table reports the estimated slope coefficient per surgeon group β̂L from the regression
ŷijht =

∑5
L=1 1{j ∈ L} βLrankk(h) + λL + ϵijht where ŷijht is the predicted 30-day risk-adjusted survival

from the model delineated in equation (7), L is the rank of the surgeon group, k(h) is the group of hospital h,
rankk(h) is the rank of hospital group k(h), and λL are surgeon group fixed effects. Surgeon groups are ranked
based on the predicted 30-day risk-adjusted survival for each group assuming each interaction with a hospital
group is equally likely. Similarly, hospital groups are ranked using the predicted 30-day risk-adjusted survival
for each group assuming each interaction with a surgeon group is equally likely. The predicted survival is
expressed in percentage points of survival. These slope coefficients correspond to the slope of fitted line
across hospital rankings for each surgeon group displayed in Figure 4a. The production function of survival
appears to be sub-modular: the slope for low-survival surgeons is larger than for high-survival surgeons.
Groups are formed using k -means clustering on average risk-adjusted survival as delineated in Section 3.
Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from
the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included. Standard errors in
parenthesis are bootstrapped standard errors using 1,000 replications.
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Table 5: Robustness of the variance decomposition

Percentage of explained variance
net of covariates (%)

Surgeons Hospitals Sorting Correlation
V ar(αl(j))

V ar(ŷE)

V ar(ψk(h))

V ar(ŷE)
2× cov(ψk(h),αl(j))

V ar(ŷE)
corr(ψk(h), αl(j))

Baseline 65.33 9.56 25.11 0.50
A. Control function

Control function 72.44 6.09 21.46 0.51
B. Logit production function

Logit 65.23 9.93 24.84 0.49
C. Alternative number of groups

K=5, L=10 69.82 7.12 23.06 0.52
K=10, L=5 61.56 11.66 26.78 0.50
K=10, L=10 66.20 8.94 24.86 0.51
K=20, L=20 68.35 8.00 23.65 0.51
K=50, L=50 68.46 8.18 23.37 0.49

D. Alternative classifications

Cond. moments hospitals 70.86 7.57 21.57 0.47
Quintiles risk-adjusted survival 66.60 8.15 25.25 0.54
K-means on survival, length of stay, and hospital spending 72.35 8.23 19.42 0.40
K-means on noise-adjusted estimates (empirical Bayes) 64.45 8.40 27.15 0.58

E. Alternative samples

Excluding emergencies 67.81 8.55 23.65 0.49
F. Other outcomes

Length of stay 57.30 9.75 32.95 0.70
Hospital spending 35.48 21.18 43.34 0.79

Notes: This table reports the variance decomposition as delineated in equation (A.2) for alternative specifications. The variance in predicted log-odds
of 30-day survival is used for the logit model. Conditional moments used for k -means clustering for hospitals include risk-adjusted 30-day survival for
patients above/below the median Charlson score, age, income per capita, and male/female. Quintiles include the same number of surgeries. K -means
on all outcomes includes standardized 30- and 60-day survival, length of stay, and hospital spending. K -means on the noise-adjusted estimates
groups using the risk-adjusted surgeon and hospital effects with empirical Bayes shrinkage computed as in Figure 1. For other outcome results, the
grouping is performed on the specified outcome. The sample without emergencies excludes all hospital claims with non-zero emergency department
amounts. Hospital spending corresponds to the facility payment made to the hospital. Professional fees come from the Medicare 20% carrier Research
Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included.
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Table 6: Alternative allocations of surgeons to hospitals: surgeon sorting has large consequences for aggregate patient survival

Negative
Random assortative matching

National Within HRR National Within HRR

corr(α̂l(j) + κ̄l(j), ψ̂k(h) + κ̄k(h)) 0.00 0.19 -0.75 -0.26

Change in deaths per 1,000 (reallocated - baseline)
Aggregate -2.97 -1.62 -10.52 -5.39

(0.10) (0.09) (0.11) (0.10)
% change from current allocation -7 -4 -26 -14
% of national change - 55 - 51

Standard deviation -3.14 -1.97 -12.12 -6.51
(0.13) (0.12) (0.12) (0.12)

% change from current allocation -8 -5 -31 -17
% of national change - 63 - 54

Notes: This table reports results of a partial equilibrium reallocation exercise where surgeons are reallocated to alternative hospital groups. Two
types of reallocations are reported: random reallocation and negative assortative matching. In the random reallocation, patient-hospital pairs are
randomly reallocated to surgeon groups conditional on the number of surgeries available per surgeon groups nationally. For the negative assortative
matching reallocation, surgeons from the highest survival group are allocated to the lowest survival hospital group until no surgeries are available at
this hospital group, and so on. For reallocations within HRRs, surgeon groups operating in an HRR are reallocated to alternative hospitals within
the same HRR. 30-day mortality is predicted using parameter estimates from equation (7). Results are obtained using 100 simulations, and bootstrap
standard errors are in parentheses (computed using 200 replications). A national random reallocation decreases the average number of deaths within
30-day as well as the dispersion in 30-day mortality for both specifications. Reallocating low-survival surgeons to high-survival hospital nationally
results in negative assortative matching, leading to a decrease in average 30-day mortality and its dispersion that is more than three times larger
in both specifications. Implementing reallocations within HRRs achieves more than 50% of the gains from national reallocations. The definition of
hospital referral regions (HRRs) follows the definition of the Dartmouth Atlas Project. Professional fees come from the Medicare 20% carrier Research
Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included.
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Table 7: Region-level predicted mortality and population across alternative allocations of surgeons

Predicted mortality (lives per thousand)

Random NAM

Baseline Across HRRs Within HRRs Across HRRs Within HRRs
(1) (2) (3) (4) (5)

Population (log) -2.05 0.23 -2.63 2.15 -4.53
(1.36) (0.58) (1.37) (0.50) (1.36)

Observations 305 305 305 305 305
R-squared 0.01 0.00 0.01 0.05 0.04

Notes: This table illustrates the relationship between predicted CABG mortality, expressed in deaths per thousand patients, and region size across
alternative allocations of surgeon types to hospital types. With the baseline allocation of surgeons to hospitals, larger HRRs in terms of total
population tend to exhibit lower mortality rates. When surgeons are reallocated nationally, this relationship becomes close to zero with random
sorting and reversed to positive with negative assortative matching. However, when surgeons are reallocated within their regions, this relationship
remains negative and becomes stronger, so that inequality in CABG mortality across regions increases with such reallocations within regions along
the population gradient. In the random reallocation, patient-hospital pairs are randomly reallocated to surgeon groups conditional on the number
of surgeries available per surgeon groups nationally. For the negative assortative matching reallocation, surgeons from the highest-survival group
are allocated to the lowest-survival hospital group until no surgeries are available at this hospital group, and so on. For reallocations within HRRs,
surgeon groups operating in an HRR are reallocated to alternative hospitals within the same HRR. 30-day mortality is predicted using parameter
estimates from equation (7). Results per region are averaged over 100 simulations, and bootstrap standard errors are in parentheses (computed using
200 replications). Note that results will be identical across simulations for the case of negative assortative matching reallocations within regions. The
definition of hospital referral regions (HRRs) follows the definition of the Dartmouth Atlas Project. Professional fees come from the Medicare 20%
carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included.
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A Data and theory appendix

A.1 Institutional details: coronary artery bypass graft (CABG)

surgery

Processes involved during CABG surgery. CABG surgery requires team work at

the center of which are the operating surgeon’s skills and resources put in place by the

hospital. This surgery requires an operating room and involves the operating surgeon, an

anesthesiologist, a perfusionist to operate the heart-lung machine which provides blood and

oxygen through the body in place of the heart and lungs, as well as surgical nurses and

additional surgical staff. Aside from the operating surgeon, the rest of the team is determined

by the hospital. After surgery, a team of doctors, usually called “hospitalists”, and nurses

monitor and care for the patient during recovery. Patients stay on average between eight

and twelve days in the hospital, so that while the operating surgeon skill may be crucial to

successfully restore blood flow, the hospital has a role to play in managing post-operative

complications.

Cardiac surgeons. Cardiac surgeons are highly specialized physicians. In addition to med-

ical school and residency training, cardiothoracic surgeons continue their specialization with

a two to three years fellowship. They can also specialize even more within cardiothoracics by

specializing in cardiac surgery. For surgeons performing CABG surgery, this surgery is their

most common surgery on average on Medicare patients, followed by heart valve replacement

and aortic surgery.

Since cardiac surgeons tend to be independent from hospitals, they obtain privileges and
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operate at multiple hospitals (Huckman and Pisano, 2006; Kolstad, 2013). While potentially

costly, operating at multiple hospitals allows for more flexibility for surgeons. Operating

rooms are in limited capacity: a surgeon may not always be able to operate at the same

hospital. Operating at multiple hospitals may give more scheduling flexibility to the surgeon.

More time sensitive surgeries may also require the first operating room available, regardless

of the hospital. In addition, some surgeons may want to operate at different hospitals to

access different or more patients. For example, a surgeon from the South side of Chicago

may find valuable to operate in a hospital in the North side to be able to reach North side

patients. Such flexibility does not come without potential costs, since surgeons have to get

used to different practices and teams for example.

Limited scope for selection into treatment by hospitals and surgeons. Treatment

decisions are usually made by a cardiologist and their patient prior to referral to the car-

diothoracic surgeon when CABG surgery is chosen (Mukamel, Weimer, and Mushlin, 2006).

Cardiologists who treat coronary artery disease manage the course of treatment for their

patients. Alternative treatments include management with drugs such as beta-blockers or

statins for example and percutaneous coronary intervention (PCI), a less invasive interven-

tion that consists in inserting a stent into a narrowed artery to widen it. While less invasive,

PCI may require more subsequent treatment. If a surgical treatment is chosen, the cardiolo-

gist refers the patient to an interventional cardiologist for PCI or to a cardiothoracic surgeon

for CABG surgery.

There is also limited scope for selection into treatment for patients by hospitals. CABG

surgery is an elective surgery rarely performed in an emergency setting since it is the most

invasive treatment option. While cardiologists may refer patients to cardiothoracic surgeons

within the same hospital, cardiothoracic surgeons tend to operate at multiple hospitals and

to decide jointly with their patients at which hospital to operate (Wilson, Woloshin, and

Schwartz, 2007). In other words, it is hard for cardiologists to select into treatment their

patients based on hospitals’ comparative advantages.
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A.2 Data

Matching professional fees to hospital stays. To match an operating surgeon to the

hospital where the surgery took place, I match MedPAR claims, that are at the hospital stay

level and consequently identify the patient-hospital pairs, to Carrier claims, that identify the

patient-operating surgeon pairs.32

Using the 20% sample of professional fees - the Carrier files - for years 2011 to 2017

included, I identify CABG surgery using Healthcare Common Procedure Coding System

(HCPCS) codes available at the claim line level. These codes identify the task that is billed

for. I use HCPCS codes 33510 to 33536 to identify claims relative to CABG surgery. Codes

33510 to 33516 indicate CABG with venous grafting only, codes 33533 to 33536 indicate

CABG with arterial grafting. Codes 33533 to 33536 can be combined with add-on codes

33517 to 33523 to indicate combined arterial and venous grafting. I identify the operating

surgeon as the surgeon reported as the performing physician for thsi specific claim line.

Since the identity of the hospital where the service is performed is not reported in this file,

I match these claim lines to the full sample of Medicare hospital stays using the MedPAR

data. I do so using claim dates and patient identifiers following Chen (2021): I match a

Carrier claim line to a hospital stay when the Carrier claim date is within the admission and

discharge date of the hospital stay for this patient in the MedPAR data. As indicated in

Table 1, I am able to match the claims of more than 95% patients identified in the Carrier

file.

National Plan and Provider Enumeration System (NPPES) data. The NPPES

was created by CMS to assign a unique provider identifier, the National Provider Identifier

(NPI), to healthcare providers, including physicians and hospitals. All healthcare providers

billing Medicare are required to obtain such an identifier. These files include information at

the NPI level such as physician specialties or primary practice locations.

32The patient-hospital-operating surgeon triplets could be directly identified from the CMS Inpatient
claim line files, which I did not have access to.
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Doctors and clinicians CMS data. This data comes from the online Medicare enrollment

management system named provider, enrollment, chain, and ownership system (PECOS). It

includes various information at the provider level; I notably use the year of graduation from

medical school at the physician level in this data.

Hospital general information and complications and deaths datasets. This data

contains information for all hospital registered with Medicare, including notably their owner-

ship type and quality measures such as 30-day risk-adjusted mortality for several conditions

and procedures.

CMS provider of services - hospitals files. This data is gathered as part of the CMS

provider certification process. It includes additional hospital characteristics such as the

number of beds, the number of operating rooms, and some measures of employment by

category of worker.

Medicare provider utilization and payment data - public use files. This data at the

national level contains the total amount billed to Medicare nationally or by state for each

procedure (HCPCS) code. The provider-level data reports the amount billed to Medicare at

the provider level for each procedure code. In both datasets, entries with 10 patients or less

are redacted.

A.3 Risk-adjusted survival at the patient level

I compute risk-adjusted survival at the patient level using the difference between observed

survival and predicted survival using a logit model. In particular, the predicted probability

of survival for each patient is estimated using

ln
( Pr[Yijht = 1|Xit]

1− Pr[Yijht = 1|Xit]

)
= α + βXit

where Xit include patient covariates included in Table 2 - excluding outcomes - and year

fixed effects.
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I compute the risk-adjusted survival at the patient level such that

RASRit = yijht − p̂rijht + ȳ

where yijht is the observed survival for patient i, p̂rijht is the predicted survival from the

logit model, and ȳ is the average observed survival in the sample, used as scaling.

A.4 Risk-adjusted survival at the hospital and surgeon level

I compute risk-adjusted survival at the hospital or surgeon level following the methodology

used in the CABG report-card literature (Huckman and Pisano, 2006; Ghaferi, Birkmeyer,

and Dimick, 2009; Kolstad, 2013). In particular, the predicted probability of survival for

each patient is estimated using

ln
( Pr[Yijht = 1|Xit]

1− Pr[Yijht = 1|Xit]

)
= α + βXit

The fitted values are used to form the expected survival rate (ESR) at the hospital or surgeon

level. I then obtain the average risk adjusted survival rate (RASR) for a hospital as

RASRh =
(OSRh

ESRh

)
×OSR

where OSRh is the average observed survival rate of patients treated at hospital h, ESRh is

the average expected survival rate of patients treated at hospital h, and OSR is the national

average survival rate. I use the same methodology for surgeons.
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A.5 Empirical Bayes shrinkage of individual hospital and surgeon

fixed effects

To illustrate the dispersion of the hospitals’ and surgeons’ fixed effect, I recover the average

per provider using the 30-day risk-adjusted survival (RASR) as delineated in Appendix A.3

in a simple regression using fixed effects.

Because of measurement error in these fixed effects, especially for low volume hospitals

and surgeons, measuring the standard deviation across providers using these estimated fixed

effects may overestimate the standard deviation in the “true” fixed effects. To address it,

I use the standard empirical Bayes shrinkage technique that “shrinks” noisy fixed effects

toward the mean.

Assume the estimated fixed effects are estimated with error such that

ψ̂h = ψh + eh

where ψh is the “true” fixed effect and eh is the measurement error of the estimated fixed

effect. Note that the measurement error is assumed to be independent of the “true” fixed

effect ψh.

Assuming eh are independent such that

eh ∼ N(0, π2
h)

where π2
h is the variance of the measurement error. This gives the distribution of the esti-

mated fixed effect conditional on the true fixed effect and measurement error variance

ψ̂h|ψh, π2
h ∼ N(ψh, π

2
h)
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Assume a prior distribution for the true effect such that

ψh|xh, λ, σ2 ∼ N(λxh, σ
2)

where σ2 is the variance of the true fixed effect, common to all hospitals h, and λxh is the

underlying mean as a linear function of hospitals’ covariates.

From Bayes’ rule, we obtain

ψh|xh, λ, σ2, π2
h, ψ̂h ∼ N(bhψ̂h + (1− bh)λxh, bhπ

2
h)

with

bh =
σ2

π2
h + σ2

The empirical Bayes-adjusted fixed effects correspond to the mean of the posterior such that

ψEBh =
σ2

π2
h + σ2

ψ̂h +
π2
h

π2
h + σ2

λxh

This last equation illustrates how the empirical Bayes shrinkage operates: the larger the

variance of the measurement error for a hopistal π2
h is, the more weight is given to the

underlying mean against the estimated fixed effect for this hospital. In other words, noisier

fixed effect estimates are “shrunk” toward the underlying mean.

We need estimates for π2
h, σ

2, and λxh. I will assume λxh = λ, i.e., a constant for all

hospitals, so that λ̂ corresponds to the average survival across hospitals in the sample. I

use the square of the standard errors for the estimated fixed effects as the estimate for π2
h.

Finally, I recover an estimate for σ̂2 as

σ̂2 =

∑
hwh

(
nh

nh−1
(ψ̂h − λ̂)2 − π̂2

h

)∑
hwh

where nh corresponds to the number of hospitals, and wh are weights for each hospital such
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that wh = 1
π̂2
h+σ̂

2 . More weight is given to hospitals with less measurement error. This

correponds to the algorithm detailed in the Appendix of Chandra et al. (2016a) based on

Morris (1983). σ̂2 corresponds to the estimate of the standard deviation of the “true” fixed

effects, reported in Figure 1.

A.6 K -means algorithm

The k -means clustering algorithm aims at best capturing the unobserved heterogeneity across

surgeons and hospitals. In particular, the k -means algorithm partitions the H hospitals in

the sample into a pre-specified number of groups K by solving the following weighted k -means

problem:

argmin
F̃ ,k(1),...,k(H)

H∑
h=1

nh||f(h)− F̃ (k(h))||2

where f(h) is the average risk-adjusted survival at hospital h, k(1), ..., k(H) is the par-

tition of hospitals into K types, nh the number of patients treated at hospital h, and

F̃ = (F̃ (1)′, ..., F̃ (K)′)′ are vectors where F̃ (k) corresponds to the mean of f(h) when

k(h) = k. The types are revealed by the clusters, such that the sum of the squared dis-

tance between hospitals’ mean risk-adjusted survival in that cluster and the centroid of

the cluster is minimized. The intra-type variance in mean patient risk-adjusted survival is

minimized. The number of hospitals per cluster does not need to be equal.

I follow the same strategy to partition the J surgeons into a pre-specified number of

‘’‘types” L such that

argmin
Ã,l(1),...,l(J)

J∑
j=1

nj||a(j)− Ã(l(j))||2

where a(j) is the average risk-adjusted survival for patients treated by surgeon j, l(1), ..., l(J)

is the partition of surgeons into L types, nj the number of patients treated by surgeon j,

and Ã = (Ã(1)′, ..., Ã(L)′)′ are vectors.
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A.7 Monte-Carlo simulations

I investigate the impact of using grouped fixed-effects in place of individual fixed-effects

under alternative sorting regimes using Monte-Carlo simulations. Note that I maintain the

assumption that the production function of survival is monotonic in surgeon and hospital

quality. The monotonicity assumption requires the production function of survival to be

monotonically increasing/decreasing in the hospital type conditional on a surgeon type, and

vice versa. Production functions where hospitals’ and surgeons’ fixed effects enter linearly or

multiplicatively are monotonically increasing.33 This assumption is reasonable when exam-

ining output or quality measures directly, and I maintain it in the paper and in the exercises

below.

Assuming a logit production function and positive assortative matching, I am able to

accurately recover hospitals’ and surgeons’ types as reported in Appendix Table B.6. For

both surgeons’ and hospitals’ types, the correlation between the true and the predicted

grouped fixed-effects are above 0.9, and the value of the true value of the covariance between

fixed effects can be accurately recovered from the group fixed-effects.

With negative assortative matching, average risk-adjusted survival does not allow to

correctly identify hospitals’ and surgeons’ types. As reported in Appendix Table B.7, a large

amount of hospitals and surgeons are misclassified so that the correlation between the true

and the predicted grouped fixed-effects are way below 0.9. This misclassification results

in an estimated covariance of zero whether the negative assortative matching is weak or

strong. Increasing the number of groups for both surgeons and hospitals allows to recover

the direction of sorting, but estimates of the covariance for the fixed effects converge to the

true covariance relatively slowly.

These results indicates that, assuming monotonicity of the underlying production func-

tion, positive assortative matching can be accurately identified using k -means clustering,

33Relaxing the monotonicity assumption would lead to identification issues similar to the ones raised by
negative assortative matching.
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even with a small number of k -means groups. However, I cannot separate the absence of

sorting from negative assortative matching using k -means clustering with a low number of

k -means groups.

A.8 Deriving the control function

Recall the production function of survival for patient i treated by surgeon j in hospital h as

Y ∗
ijht = g(αl(j), ψk(h), Xit) + ϵijht

where αl(j) and ψk(h) are respectively the unobserved heterogeneity of the surgeon and hos-

pital, Xit are patient observables such as age, gender, and underlying health, and ϵijht are

unobserved health shocks. I abstract away from year fixed effects in the derivations that

follow.

The observed survival Yijht for patient i treated by surgeon j in hospital h is

Yijht = DijhtY
∗
it

and

Dijht = 1{uih ≥ uih′ ,∀h′}

with uih = δh − τ ln(dih) + ηih

where uih is the utility from patient i treated by surgeon j from getting the surgery at

hospital h, δh is the perceived quality of hospital h, on which all patients and surgeons agree

within a market, and dih is the distance between the patient ZIP code and the hospital ZIP

code. I assume ηih are type-I extreme value error terms.

Denote the choice of hospital by patient i as Di which takes values (1, ..., H), so that

Di = h indicates that patient i treated by surgeon j goes to hospital h. Following Dubin
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and McFadden (1984), I impose the following linear structure to the conditional expectation

of ϵijht:

E[ϵijht|αl(j), ψk(h), κl(j)k(h), Xit, ηi1, ..., ηiH , Di = h] =
∑
s∈H

ϕs(ηis − µη) + φ(ηih − µη)

where µη is the Euler constant (mean of logit errors) and H the set of hospitals. Recall that

ϕs is hospital-specific and identifies selection into hospitals, while φ is choice-specific and

identifies selection on gains.

The expected survival conditional on the fixed effects, patient observables Xit, the choice of

hospital Di, and the unobserved logit shocks ηi1, ..., ηiH can be written as

E[Yijht|αl(j), ψk(h), κl(j)k(h), Xit, ηi1, ..., ηiH , Di = h] = αl(j) + ψk(h) + κl(j)k(h) + βXit

+
∑
s∈H

ϕs(ηis − µη) + φ(ηih − µη)

Integrating over the unobserved logit shocks ηi1, ..., ηiH , we obtain

E[Yijht|αl(j), ψk(h),κl(j)k(h), Xit, ln di1, ..., ln diH , Di = h] = αl(j) + ψk(h) + κl(j)k(h) + βXit

+
∑
s∈H

ϕsE[ηis − µη| ln di1, ..., ln diH , Di = h] + φE[ηih − µη| ln di1, ..., ln diH , Di = h]

To derive the control functions, note that

E[ηih − µη| ln di1, ..., ln diH , Di = h] = E[uih| ln di1, ..., ln diH , Di = h]− δh + λ ln dih − µη

Using Small and Rosen (1981), we have

E[uih| ln di1, ..., ln diH , Di = h] = ln
[ H∑
s=1

exp(δs − λ ln dis)
]
+ µη
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so that

E[ηih − µη| ln di1, ..., ln diH , Di = h] = E[uih| ln di1, ..., ln diH , Di = h]− δh + λ ln dih + µη

= ln
[ H∑
s=1

exp(δs − λ ln dis)
]
− δh + λ ln dih

= ln
[ H∑
s=1

exp(δs − λ ln dis)
]
− ln

[
exp(δh + λ ln dih)

]
= ln

[∑H
s=1 exp(δs − λ ln dis)

exp(δh + λ ln dih)

]
= − ln

[ exp(δh + λ ln dih)∑H
s=1 exp(δs − λ ln dis)

]
= − ln p̂ih

with p̂ih the predicted probability for i to choose hospital h obtained from the demand model.

Now, assuming the choice of hospital is s ̸= h, we have

E[ηih − µη| ln di1, ..., ln diH , Di = s) = E[uih| ln di1, ..., ln diH , Di = s]− δh + λ ln dih − µη

Use

E[uih] = E[uih| ln di1, ..., ln diH , Di = h]Pr(Di = h) + E[uih| ln di1, ..., ln diH , Di = s]Pr(Di ̸= h)

⇐⇒ E[uih| ln di1, ..., ln diH , Di = s] =
E[uih]− E[uih| ln di1, ..., ln diH , Di = h]Pr(Di = h)

Pr(Di ̸= h)

⇐⇒ E[uih| ln di1, ..., ln diH , Di = s] =
E[uih]− E[uih| ln di1, ..., ln diH , Di = h]Pr(Di = h)

1− Pr(Di = h)

⇐⇒ E[uih| ln di1, ..., ln diH , Di = s]

=
δh − λ ln dih + µη − (ln

[∑H
s=1 exp(δs − λ ln dis)

]
+ µη)Pr(Di = h)

1− Pr(Di = h)
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Denote p̂ih = Pr(Di = h) and substitute such that

E[ηih − µη| ln di1, ..., ln diH , Di = s] = E[uih| ln di1, ..., ln diH , Di = s]− δh + λ ln dih − µη

=
δh − λ ln dih + µη −

(
ln
[∑H

s=1 exp(δs − λ ln dis)
]
+ µη

)
p̂ih

1− p̂ih
− δh + λ ln dih − µη

=
δh − λ ln dih + µη −

(
ln
[∑H

s=1 exp(δs − λ ln dis)
]
+ µη

)
p̂ih

1− p̂ih
− (1− p̂ih)(δh − λ ln dih + µη)

(1− p̂ih)

=
δh − λ ln dih + µη − (1− p̂ih)(δh − λ ln dih + µη)−

(
ln
[∑H

s=1 exp(δs − λ ln dis)
]
+ µη

)
p̂ih

1− p̂ih

=
p̂ih

(
δh − λ ln dih + µη − ln

[∑H
s=1 exp(δs − λ ln dis)

]
− µη

)
1− p̂ih

=
p̂ih

1− p̂ih

(
ln
(
exp(δh − λ ln dih)

)
− ln

[ H∑
s=1

exp(δs − λ ln dis)
])

=
p̂ih

1− p̂ih
ln
( exp(δh − λ ln dih)∑H

s=1 exp(δs − λ ln dis)

)
=

p̂ih
1− p̂ih

ln p̂ih

Therefore, the control function can be written as:

θis(h) =


− ln p̂is if s = h

p̂is
1−p̂is ln p̂is if s ̸= h

Note that the control function is positive when s = h but negative otherwise since ln p̂is < 0

with 0 < p̂is < 1. This delivers the following estimating equation, with θis(h) as defined

above:

E[Yijht|αl(j), ψk(h),κl(j)k(h), Xit, ln di1, ..., ln diH , Di = h] =

αl(j) + ψk(h) + κl(j)k(h) + βXit +
∑
s∈H

ϕsθis(h) + φθih(h)
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A.9 Variance decompositions

Linear case. I estimate a model without interactions such that

Pr[Yijht = 1|Xit, αl(j), ψk(h), γt] = αl(j) + ψk(h) +
∑
p

βpXit,p + γt (A.1)

I can next decompose the explained variance in 30-day survival net of covariates such that

V ar(Yijht −
∑
p

β̂pXit,p − γ̂t − ϵ̂ijht) = V ar(α̂l(j)) + V ar(ψ̂k(h)) + 2× cov(α̂l(j), ψ̂k(h)) (A.2)

Table 5 and Appendix Table B.13 shows results from such decompositions, expressing

relative contributions as percentages of the explained variance in 30-day survival net of

covariates V ar(Yijht −
∑

p β̂pXit,p − γ̂t − ϵ̂ijht). The term V ar(α̂l(j)) captures the contribu-

tion of surgeon groups, term V ar(ψ̂k(h)) captures the contribution of hospital groups, and

cov(α̂l(j), ψ̂k(h)) captures the direction and contribution of sorting.

Logit case. I alternatively estimate a logit production function where surgeon and hospital

group quality enter additively such that

Pr[Yijht = 1|Xit, αl(j), ψk(h)] =
exp

(
αl(j) + ψk(h) +

∑
s βsXit,s

)
1 + exp

(
αl(j) + ψk(h) +

∑
p βpXit,p

) (A.3)

Since the predicted log odds of survival are linear in the hospital and surgeon group fixed

effects and patient covariates, I decompose the variance as

V ar
(
ln

(
p̂ijht

1− p̂ijht

)
−

∑
p

β̂pXit,p

)
= V ar(α̂l(j)) + V ar(ψ̂k(h)) + 2× cov(ψ̂k(h), α̂l(j)) (A.4)

where p̂ijht corresponds to the predicted 30-day survival from the estimated logit model.

Panel B of Table 5 reports results from this decomposition.
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Figure B.1: Proportion of “single-homers,” “multi-homers,” and “traditional movers”

(a) Proportion of surgeons
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(b) Proportion of surgeries
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Notes: “Multi-homers” are defined as surgeons who performed CABG surgeries at more than one hospital within a year for four years of more in the
sample. They represent 12.7% of all surgeons performing CABG in the sample, and 19.2% of CABG surgeries in the sample. “Traditional movers” are
surgeons who performed CABG surgeries at more than one hospital in one, two, or three years in the sample. They represent 25.2% of all surgeons
performing CABG in the sample, and 25.1% of CABG surgeries in the sample. “Single homers” include surgeons who only performed CABG surgeries
at a unique hospital in the sample. They represent 62.1% of all surgeons performing CABG in the sample, and 55.7% of CABG surgeries in the
sample. Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research
Identifiable Files. Years 2011 to 2017 are included.
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Figure B.2: Proportion of “single-homers,” “multi-homers,” and “traditional movers” using hospital groups

(a) Proportion of surgeons
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(b) Proportion of surgeries
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Notes: The fraction of surgeons observed at more than one hospital group falls to about 30%, compared to Figure B.1 in which the fraction of
surgeons observed at more than one hospital is close to 40%. “Multi-homers” are defined as surgeons who performed CABG surgeries at more than
one hospital group within a year for four years of more in the sample. “Traditional movers” are surgeons who performed CABG surgeries at more
than one hospital group in one, two, or three years in the sample. “Single homers” include surgeons who only performed CABG surgeries at a unique
hospital group in the sample. K -means clustering is performed using average risk-adjusted survival as delineated in Section 3. Professional fees come
from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to
2017 are included.
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Figure B.3: Risk-adjusted survival rate variation across k -means groups

(a) Hospitals
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(b) Surgeons
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Notes: The variation in risk-adjusted 30-day survival across groups of hospitals and surgeons resulting from k -means clustering is large. Risk-adjusted
survival is expressed as the difference between the average observed and average predicted 30-day survival. Numbers on top of bars indicate the
number of hospitals or surgeons per group. Predicted survival is computed as described in Section 3 using a logit model and including all patient
covariates and year fixed effects. K -means clustering is performed using average risk-adjusted survival as delineated in Section 3. Professional fees
come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years
2011 to 2017 are included.
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Figure B.4: No evidence that surgeons systematically triage sicker patients into higher-survival hospitals
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Notes: This graph examines the existence of “triaging” for multi-homers, i.e., whether surgeons tend to operate on sicker patients at higher-survival
hospitals using patient observables. All coefficients are close to zero and statistically insignificant, suggesting a limited role for triaging into hospitals
using patient observables. Coefficients reported in this graph correspond to the estimated β̂ from the regression xijh = α + βrankk(h) + λj + ϵijh.
xijh correspond to the covariates of patients treated by surgeon j at hospital h, and λj are individual surgeon fixed effects. The ranks of hospital
groups are computed as the rank in predicted survival based the model from equation (7) assuming each surgeon group is equally likely for each
hospital group. “Multi-homers” are defined as surgeons who performed CABG surgeries at more than one hospital group within a year for four years
of more in the sample. Surgeon and hospital groups are formed using k -means clustering on average risk-adjusted survival as delineated in Section 3.
Confidence intervals displayed are 95% confidence intervals constructed using clustered standard errors at the surgeon level.
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Figure B.5: No evidence that hospitals systematically triage sicker patients into higher-survival surgeons
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Notes: This graph examines the existence of “triaging” within hospitals, i.e., whether higher-survival surgeons tend to operate on sicker patients within
a hospital using patient observables. All coefficients are close to zero and statistically insignificant, suggesting a limited role for triaging into surgeons
using patient observables. Coefficients reported in this graph correspond to the estimated β̂ from the regression xihj = α+ βrankl(j) +λh + ϵijh. xijh
correspond to the covariates of patients treated by surgeon j at hospital h, and λh are individual hospital fixed effects. The ranks of surgeon groups
are computed as the rank in predicted risk-adjusted survival based the model from equation (7) assuming each hospital group is equally likely for
each surgeon group. Surgeon and hospital groups are formed using k -means clustering on average risk-adjusted survival as delineated in Section 3.
Confidence intervals displayed are 95% confidence intervals constructed using clustered standard errors at the hospital level.
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Figure B.6: Length of stay and hospital spending across surgeon and hospital groups (groups formed using survival)

(a) Length of stay
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(b) Hospital spending
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Notes: These graphs show how predicted length of stay and hospital spending for the average patient varies with hospital and surgeon group ranks,
when surgeon and hospital groups are still determined using average risk-adjusted survival. These results are obtained from regressions as delineated
in equation (7) but when the patient outcome on the LHS is alternatively length of stay or hospital spending. Groups are formed using k -means
clustering on average risk-adjusted survival as delineated in Section 3. The slopes of fitted lines across hospital rankings for each surgeon group are
indicated to the right of each line. Lower-survival surgeons tend to exhibit longer length of stay and higher hospital spending than high-survival
surgeons. However, examining the variation across hospital ranks, we find that lower-survival surgeons tend to achieve worse length of stay and
hospital spending at better hospitals. This is consistent with the “failure-to-rescue” mechanisms. Surgeon groups are ranked based on the predicted
30-day risk-adjusted survival for each group assuming each interaction with a hospital group is equally likely. Similarly, hospital groups are ranked
using the predicted 30-day risk-adjusted survival for each group assuming each interaction with a surgeon group is equally likely. Professional fees
come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years
2011 to 2017 are included.
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Figure B.7: Heterogeneity in patients treated across provider groups captured by provider location

(a) No provider-location control
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(b) With provider-HRR fixed effects
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Notes: These graphs show the relationship between patient observables and the rank of the provider they receive surgery from. Highly ranked surgeons
and hospitals tend to treat older patients living in highly populated high income ZIP codes, suggesting that high-type providers tend to be located
in such locations. Indeed, the relationships with patient socioeconomic status such as ZIP code income, population and age become statistically
insignificant after controlling for the provider locations. However, there exist marginally statistically significant evidence of advantageous selection
into provider types using health measures, such as the Charlson score for surgeons or the fraction of patients with congestive heart failure for hospitals.
Coefficients reported in panel B.7a correspond to the estimated β̂ from the regression xil(j) = α + βrankl(j) + ϵil(j), where xil(j) correspond to the
covariates of patients treated by provider group l(j). In panel B.7b, provider-location fixed effects λz(j) are added using the ZIP code of their primary

practice such that xil(j) = α+βrankl(j)+λz(j)+ϵil(j) Coefficients reported in this graph correspond to the estimated β̂ from the regression . The ranks
of surgeon and hospital groups are computed as the rank in predicted risk-adjusted survival based the model from equation (7). Confidence intervals
displayed are at 95% constructed using robust standard errors. Provider groups are formed using k -means clustering on average risk-adjusted survival
as delineated in Section 3. Income per capita and population are computed from the patient ZIP code of residence and come from the American
Community Survey (ACS) 2015-2019 from the U.S. Census Bureau. Professional fees come from the Medicare 20% carrier Research Identifiable Files,
hospital stays from the Medicare MedPAR Research Identifiable Files, and beneficiary information from the Medicare Beneficiary Research Identifiable
Files. Years 2011 to 2017 are included.
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Figure B.8: Sorting within hospital referral regions (HRRs)
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Number of HRRs: 231.
74 HRRs are missing because they only have one hospital or surgeon type.

Notes: This graph shows the distribution of the estimated correlation between surgeon and hospital group
effects computed for each HRR separately. There exist substantial positive assortative matching within HRRs
for a substantial fraction of HRRs. Predictions come from estimating the model described by equation (7).
Surgeon group effects are calculated assuming equal probability for each hospital group interaction. Similarly,
hospital group effects are calculated assuming equal probability for each surgeon group interaction. The
correlations between surgeon and hospital group effects are computed for the subset of patients treated in a
hospital located in each specific HRR. The definition of hospital referral regions (HRRs) follows the definition
of the Dartmouth Atlas Project. Professional fees come from the Medicare 20% carrier Research Identifiable
Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are
included.
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Figure B.9: Distribution of distances between patients and their chosen hospital
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Notes: This graph depicts the distribution of distances between the patient’s residential ZIP code and their
chosen hospital’s ZIP code, for patients treated at hospitals within their residential hospital referral region
(HRR). 21% of patients get CABG surgery outside of their HRRs in the sample. The average distance to
hospitals is 18.7 miles for patients treated within their residential HRR: 53% of patients are within 20 miles
of the hospital and 7% of patients are within the same ZCTA as the hospital. Hospital ZIP codes come
from the 2017 National Plan and Provider Enumeration System (NPPES) data, and beneficiary ZIP codes
from the Medicare Beneficiary Research Identifiable Files. The definition of hospital referral regions (HRRs)
follows the definition of the Dartmouth Atlas Project. Professional fees come from the Medicare 20% carrier
Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years
2011 to 2017 are included.
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Figure B.10: Distance to the hospital is a strong predictor of hospital choice within an HRR

(a) Probability to choose a hospital and distance
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(b) Distance parameters per HRR

Fitted line: y = 1.025 (0.007) * x + −0.001 (0.008)
Correlation: 0.99. N: 305.
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Notes: Panel B.10a depicts the relationship between the predicted probabilities to choose a hospital using the demand model delineated in equation (8),
estimated HRR by HRR, and the distance between the patient and the hospital ZIP codes. Only predicted probabilities for hospitals within a patient’s
residential HRR are included. The graphs summarize this relationship using a binned scatter plot with twenty equally sized bins. Panel B.10b depicts
the estimated demand parameter for the logarithm of distance τ in the specification without patient observables from equation (8) and the specification
with patient observables such that uj(i)h = δh(Xi) − τ ln(dih) + κj + ηj(i)h. The estimated parameters for the logarithm of distance are extremely
similar across the two specifications, with a correlation over 0.99, hence lending support to the exclusion restriction assumption. Included patient
covariates are patient age, charlson score, and ZIP code log income per capita. Hospital ZIP codes come from the 2017 National Plan and Provider
Enumeration System (NPPES) data, and beneficiary ZIP codes from the Medicare Beneficiary Research Identifiable Files. Distances are calculated
using ZCTA-to-ZCTA distances for distances below 100 miles, using HSA-to-HSA distances when above 100 miles and when patient and provider
HSAs differ, and capped at 100 miles when patients and providers are in the same HSA but with ZCTAs distant over 100 miles. Patients’ residential
ZIP codes are mapped to income per capita and total population using the American Community Survey (ACS) 2015-2019 from the U.S. Census
Bureau. The definition of hospital referral regions (HRRs) follows the definition of the Dartmouth Atlas Project. Professional fees come from the
Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are
included.
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Figure B.11: Distribution of estimated control function parameters ϕ̂s across hospitals
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Notes: This graph shows the distribution of the estimated control function parameters ϕ̂s from equation (12),
with s denoting a specific hospital. When the estimated coefficient is negative, sickest patients tend to
select into that specific hospital. Conversely, when the estimated coefficient is positive, healthier patients
tend to select into that specific hospital. Results suggest that some hospitals face adverse selection while
other hospitals face advantageous selection. Professional fees come from the Medicare 20% carrier Research
Identifiable Files, hospital stays from the Medicare MedPAR Research Identifiable Files, and beneficiary
information from the Medicare Beneficiary Research Identifiable Files. Years 2011 to 2017 are included.
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Figure B.12: Patient selection into provider groups

(a) Including patient observables only

Slope hospitals: −0.0001 (0.0001)
Slope surgeons: 0.0000 (0.0001)
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(b) Including patient observables and control function arguments

Slope hospitals: −0.0002 (0.0001)
Slope surgeons: −0.0017 (0.0001)
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Notes: This figure depicts the variation in 30-day survival across providers’ ranks that is predicted only by patient covariates as estimated from
equations (7) and (12). There is no systematic relationship between survival predicted only by patient observables and the ranking of their provider.
Leveraging distance to hospitals as an excluded instrument to identify selection on unobservables, I find evidence for systematic adverse selection into
provider rankings for both surgeons and hospitals since the relationship is negative and statistically significant for surgeons and hospitals. Adverse
selection appears to be stronger into surgeons. The predicted 30-day survival net of provider fixed effects is calculated as p̂it = p̄ +

∑
p β̂pXit,p + γ̂t

and p̂it = p̄+
∑

p β̂pXit,p + γ̂t +
∑

s∈H ϕ̂sθ̂is(h)+ ψ̂θ̂ih(h) estimated from equations (7) and (12) respectively. p̄ corresponds to survival at the average
provider, computed as the average of the sum of the surgeon, hospital, and surgeon-hospital fixed effects. Groups are formed using k -means clustering
on average risk-adjusted survival as delineated in Section 3. The rank of providers is calculated based on the predicted risk-adjusted survival for the
provider’s group when all hospitals or surgeons groups are equally likely. Standard errors displayed are robust standard errors. Professional fees come
from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to
2017 are included.
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Figure B.13: Substitutability and sorting with a control function approach

(a) Substitutability
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(b) Sorting
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Notes: These graphs show results when using the control function approach delineated in equation (12). Panel B.13a displays the predicted 30-day
survival for the average patient in the data across hospital and surgeon groups where groups are described by their relative rankings. The production
function of survival appears to be sub-modular: the return of allocating lower-rank surgeons to high-survival hospitals is greater than for high-survival
surgeons. The slopes of fitted lines across hospital rankings for each surgeon group are reported in Table B.16: the slope for lower-rank surgeons is
greater than for high-survival surgeons. Marker sizes are proportional to the number of surgeries performed by each hospital-surgeon group. Panel
B.13b describes the percentage of surgeries performed by each surgeon group at each hospital group, where groups are described by their relative
rankings. Surgeries at high-survival hospitals tend to be performed by high-survival surgeons: high-survival surgeons sort into high-survival hospitals.
Surgeon groups are ranked based on the predicted 30-day risk-adjusted survival for each group assuming each interaction with a hospital group is
equally likely. Similarly, hospital groups are ranked using the predicted 30-day risk-adjusted survival for each group assuming each interaction with a
surgeon group is equally likely. Groups are formed using k -means clustering on average risk-adjusted survival as delineated in Section 3. Professional
fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years
2011 to 2017 are included.
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Figure B.14: Robustness of the variance decomposition to alternative numbers of k -means groups

(a) Vary L, K=5
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(b) Vary K, L=5
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(c) Vary K and L jointly
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Notes: These graphs show results from the variance decomposition of predicted log-odds when varying the number of k -means groups for hospitals,
surgeons, and both jointly. Results are robust to alternative number of ex-ante groups specified for k -means clustering. K and L denote the number
of ex-ante groups specified for k -means clustering for hospitals and surgeons respectively. The variance decomposition comes from the decomposition
of predicted log-odds as delineated in equation (A.4). The hospital component corresponds to V ar(ψ̂k(h)), the surgeon component corresponds to

V ar(α̂l(j)), and the sorting component corresponds to cov(ψ̂k(h), α̂l(j)). They are expressed as a percentage of the predicted log odds of 30-day survival

net of covariates V ar(ln
(

p̂it

1−p̂it

)
−

∑
s β̂sXit,s), where p̂it corresponds to the predicted 30-day survival from the logit model. K -means clustering is

performed using average risk-adjusted survival as delineated in Section 3. Professional fees come from the Medicare 20% carrier Research Identifiable
Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included.
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Table B.1: Characteristics of patients for “single-homers,” “multi-homers,” and “traditional movers”

Single homers Multi homers Other movers Differences

(1) (2) (3) (2)-(1) (3)-(1) (2)-(3)

Age 72.43 72.23 72.14 -0.21*** -0.29*** 0.08
(8.24) (8.09) (8.28) (0.06) (0.06) (0.07)

Dual eligible (Medicaid + Medicare) 0.16 0.20 0.17 0.04*** 0.01*** 0.02***
(0.37) (0.40) (0.38) (0.00) (0.00) (0.00)

Income per capita (USD, x1,000) 33.73 32.51 33.31 -1.22*** -0.43*** -0.79***
(14.04) (13.65) (13.86) (0.10) (0.09) (0.12)

ZIP code population (x1,000) 24.38 27.77 25.31 3.38*** 0.93*** 2.45***
(18.64) (19.83) (18.84) (0.14) (0.12) (0.16)

Female 0.30 0.31 0.30 0.01 -0.00 0.01**
(0.46) (0.46) (0.46) (0.00) (0.00) (0.00)

ESRD 0.04 0.06 0.05 0.01*** 0.00*** 0.01***
(0.20) (0.23) (0.21) (0.00) (0.00) (0.00)

Charlson score 3.38 3.43 3.46 0.05*** 0.08*** -0.02
(2.65) (2.69) (2.67) (0.02) (0.02) (0.02)

30-days mortality 0.04 0.04 0.04 0.00*** 0.00*** 0.00
(0.19) (0.20) (0.20) (0.00) (0.00) (0.00)

60-days mortality 0.05 0.06 0.05 0.01*** 0.00* 0.00
(0.22) (0.23) (0.23) (0.00) (0.00) (0.00)

Length of stay 10.36 10.20 10.34 -0.15*** -0.02 -0.14***
(7.82) (6.76) (7.34) (0.06) (0.05) (0.06)

Years since medical school graduation, as of 2010 23.81 24.61 21.17 0.80*** -2.63*** 3.43***
(9.10) (9.19) (8.32) (0.07) (0.06) (0.07)

Number of patients 72,439 25,004 32,632
Number of surgeons 1,797 366 729

Notes: “Multi-homers” are defined as surgeons who performed CABG surgeries at more than one hospital within a year for four years of more in
the sample. “Traditional movers” are surgeons who performed CABG surgeries at more than one hospital in one, two, or three years in the sample.
“Single homers” include surgeons who only performed CABG surgeries at a unique hospital in the sample. “Multi-homers” and “traditional movers”
tend to operate on younger, sicker, lower income patients residing in more populated ZIP codes. “Traditional movers” have on average graduated
between 2 and 3 years later than “multi-homers” and “single-homers.” Tests for differences in means across types of surgeons are independent t-tests.
Statistical significance: *** 2.5% , ** 5%, and * 10%. Medical school graduation year comes from the 2017 doctors and clinicians CMS public use
dataset. Income per capita and population come from the American Community Survey (ACS) 2015-2019 from the U.S. Census Bureau. Professional
fees come from the Medicare 20% carrier Research Identifiable Files, hospital stays from the Medicare MedPAR Research Identifiable Files, and
beneficiary information from the Medicare Beneficiary Research Identifiable Files. Years 2011 to 2017 are included.
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Table B.2: Activity split across hospitals for “multi-homers”

Percentage of surgeon’s activity

Number of hospitals in a year 2 3 4 or more

Top 1 hospital 73.1 57.4 48.4
Top 2 hospital 26.9 27.9 23.2
Top 3 hospital onward - 14.8 28.4

Number of surgeons 349 154 35

Notes: Only “multi-homers,” i.e., surgeons who performed CABG surgeries at more than one hospital within
a year for four years of more in the sample, in years when they performed CABG surgeries at more than
hospital are included. A surgeon’s activity is measured as the total number of CABG surgeries performed by
that surgeon in a given year in the sample. The share of a surgeon’s activity at other hospitals than their top
choice is substantial. “Multi-homers” practicing at two hospitals in a given year perform on average 73.1%
of their CABG surgeries at one hospital and the remaining 26.9% CABG surgeries at a second hospital.
For surgeons practicing at three or more different hospitals in a given year, more than 40% of their CABG
surgeries are performed at other hospitals than their top choice. “Multi-homers” in the sample practice
at two to seven different hospitals witin a year. The top 1 hospital for a surgeon is the hospital at which
the surgeon performed the largest share of their CABG surgeries in a given year. The top 2 hospital is
the hospital at which the surgeon performed the second largest share of their CABG surgeries in a given
year. The top 3 hospital onward include hospitals at which the surgeon performed all their other CABG
surgeries in a given year. Professional fees come from the Medicare 20% carrier Research Identifiable Files,
and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included.

Table B.3: Variance in 30-day survival within and across providers

Observed Risk-adjusted (RASR)
Hospitals Surgeons Hospitals Surgeons

Across
Amount 0.00062 0.00111 0.00062 0.00111
Percentage of total 1.6 2.9 1.5 2.8

Within
Amount 0.03756 0.03707 0.03820 0.03771
Percentage of total 98.3 97.0 98.4 97.1

Total 0.03818 0.03818 0.03882 0.03882

Notes: This table decomposes the total 30-day observed and risk-adjusted patient survival variance into
across versus within providers variance. Risk-adjustment is performed by predicting 30-day survival using a
logit model as delineated in Appendix A.3. Professional fees come from the Medicare 20% carrier Research
Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to
2017 are included.
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Table B.4: Suggestive evidence of positive assortative matching: alternative proxies for surgeon skill and hospital quality

Hospital quality

30-day risk-adjusted survival (CMS)

CMS overall rating AMI CABG COPD Heart Failure Pneumonia Stroke

Surgeon skill
Noise-adjusted 30-day survival for CABG .11 .19 .28 .043 .094 .11 .027
Average yearly CABG volume .098 .058 .026 -.016 .019 -.058 .046

N 103,240 126,820 125,201 124,638 126,820 125,187 123,463

Notes: This table displays the correlations between alternative proxies for surgeon skill and hospital quality. Higher-skill surgeons tend to practice at
better scoring hospitals across almost all alternative proxies. However, high-volume surgeons for CABG surgery do not tend to practice at high-survival
hospitals for two conditions: chronic obstructive pulmonary disease (COPD) and pneumonia. This is not surprisng as these measures of hospital
quality are likely less relevant for cardiac surgeries such as CABG. Note also that CABG volume in Medicare is likely to be a noisy proxy for surgeon
skill. The noise-adjusted estimates are the same as the ones displayed in Figure 1 and computed as delineated in Appendix A.5. These estimates use
empirical Bayes shrinkage to adjust for measurement error, and are risk-adjusted using predicted 30-day survival using a logit model as delineated in
Appendix A.3. The CMS five-star ratings and mortality measures are obtained from the CMS Hospital General Information and Complications and
Deaths datasets for 2017. Surgeons’ Medicare CABG frequency is calculated as a yearly average across 2012 to 2017 in the CMS Medicare Physician
& Other Practitioners file. Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare
MedPAR Research Identifiable Files. Years 2011 to 2017 are included.
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Table B.5: Summary of observations per provider: surgeons and hospitals

Standard
Mean Median deviation

Per surgeon
Number of unique patients 45 37 34
Number of unique hospitals 1.5 1 .81

Per hospital
Number of unique patients 95 69 91
Number of unique surgeons 3.8 3 2.7

Notes: This table summarizes the number of unique patients and unique hospitals or surgeons per type of
provider in the final sample. Professional fees come from the Medicare 20% carrier Research Identifiable
Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are
included.
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Table B.6: Monte Carlo simulation results, assuming positive assortative matching

Classification Covariance

Median number of Median number of

Sorting patients per hospital patients per surgeon corr(ψh, ψ̂k(h)) corr(αj, α̂l(j)) cov(ψh, αj) cov(ψ̂k(h), α̂l(j))
parameter K (mean) (mean) (mean) (mean) (mean) (mean)

0.1 5 95.2 12.3 0.90 0.90 0.18 0.24
0.1 10 95.2 12.3 0.92 0.92 0.18 0.25
0.1 30 95.3 12.4 0.94 0.93 0.18 0.23
0.3 5 95.5 16.4 0.92 0.92 0.50 0.51
0.3 10 95.7 16.6 0.93 0.94 0.50 0.58
0.3 30 95.7 16.8 0.93 0.94 0.50 0.52

Notes: Assuming positive assortative matching, the correlation between true individual fixed effects and estimated group fixed effects is above 0.90.
This correlation gets larger with stronger positive assortative matching, and with more ex-ante specified k -means groups. The network of surgeon-
hospital pairs is simulated for 10,000 patients. The true production function is assumed to be a logit function of individual hospital and surgeon fixed
effects. K -means clustering is performed on average observed survival in the simulated data with alternative number of groups, equal for hospitals
and surgeons, specified by K. Estimated parameters are estimated from a two-way logit model. The means are calculated across 500 simulations.
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Table B.7: Monte Carlo simulation results, assuming negative assortative matching

Classification Covariance

Median number of Median number of

Sorting patients per hospital patients per surgeon corr(ψh, ψ̂k(h)) corr(αj, α̂l(j)) cov(ψh, αj) cov(ψ̂k(h), α̂l(j))
parameter K (mean) (mean) (mean) (mean) (mean) (mean)

-0.1 5 95.3 12.3 0.84 0.84 -0.18 0.01
-0.1 10 95.5 12.3 0.87 0.87 -0.18 -0.00
-0.1 30 95.3 12.3 0.90 0.89 -0.18 -0.04
-0.1 40 95.4 12.4 0.91 0.90 -0.17 -0.05
-0.3 5 95.8 16.6 0.63 0.78 -0.50 0.01
-0.3 10 95.7 16.5 0.68 0.80 -0.50 -0.01
-0.3 30 95.9 16.6 0.74 0.85 -0.50 -0.05
-0.3 40 95.7 16.7 0.77 0.87 -0.50 -0.08

Notes: This table shows that classification error is larger with negative assortative matching, and that increasing the number of groups partially
alleviates the negative bias on the estimated covariance. The stronger negative assortative matching is, the lower the correlation between true
individual fixed effects and estimated group fixed effects. Classification error biases the estimated covariance upward toward zero, hence biasing
against finding any significant sorting between surgeons and hospitals. The network of surgeon-hospital pairs is simulated for 10,000 patients. The
true production function is assumed to be a logit function of individual hospital and surgeon fixed effects. K -means clustering is performed on average
observed survival in the simulated data with alternative number of groups, equal for hospitals and surgeons, specified by K. Estimated parameters
are estimated from a two-way logit model. The means are calculated across 500 simulations.
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Table B.8: Estimated coefficients on patient observables for risk adjustment

Selection on observables Control function

Age - [65;70) 0.0053*** 0.0051***
(0.0021) (0.0021)

Age - [70;75) 0.0002 0.0001
(0.0021) (0.0021)

Age - [75;80) -0.0085*** -0.0087***
(0.0021) (0.0022)

Age - [80;85) -0.0215*** -0.0218***
(0.0023) (0.0023)

Age - [85;90) -0.0193*** -0.0193***
(0.0031) (0.0031)

Age - [90;95) -0.0675*** -0.0674***
(0.0078) (0.0078)

Age - [95;100) 0.0132 0.0159
(0.0409) (0.0413)

Female -0.0163*** -0.0164***
(0.0012) (0.0012)

Dual eligible (Medicare + Medicaid) 0.0063*** 0.0064***
(0.0016) (0.0016)

Income per Capita (log) 0.0047*** 0.0041***
(0.0016) (0.0018)

Population (log) -0.0002 -0.0000
(0.0005) (0.0005)

End stage renal disease -0.0256*** -0.0256***
(0.0027) (0.0027)

Charlson score -0.0012*** -0.0012***
(0.0003) (0.0003)

Comorbidity - Acute myocardial infarction -0.0093*** -0.0095***
(0.0012) (0.0012)

Comorbidity - Congestive Heart failure -0.0224*** -0.0225***
(0.0012) (0.0013)

Comorbidity - Peripheral vascular disease -0.0117*** -0.0116***
(0.0013) (0.0014)

Comorbidity - Cerebrovascular disease 0.0000 0.0000
(0.0012) (0.0013)

Comorbidity - Chronic obstructive pulmonary disease 0.0004 0.0000
(0.0013) (0.0013)

Roy selection -0.0000
(0.0007)

N 130,075 130,075

Notes: This table reports the estimated coefficient for patient covariates from running regressions delineated
in equations (7) and (12). Income per capita and population are computed from the patient’s ZIP code of
residence and come from the American Community Survey (ACS) 2015-2019 from the U.S. Census Bureau.
Standard errors are clustered at the year, surgeon and hospital group levels. Statistical significance: ***
2.5% , ** 5%, and * 10%. Professional fees come from the Medicare 20% carrier Research Identifiable Files,
and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included.
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Table B.9: Correlation of estimated surgeon group effects with external measures of surgeons’ skill

(1) (2) (3) (4) (5) (6) (7) (8)

Years since medical school graduation (as of 2010) -0.0047 -0.0446
(0.0742) (0.0717)

CABG volume in Medicare 2012-2017 (USD) 0.1915 0.0827
(0.0558) (0.1369)

CABG volume in Medicare 2012-2017 (frequency) 0.1932 0.0816
(0.0571) (0.1385)

Medicare volume 2012-2017 (USD) 0.1758 -0.0309
(0.0542) (0.1745)

Medicare surgical volume 2012-2017 (USD) 0.1929 0.1347
(0.0534) (0.1878)

ZIP code population 0.0220 0.0885
(0.0671) (0.0665)

ZIP code median HH income (USD) 0.1063 0.0968
(0.0639) (0.0672)

Observations 2,581 2,703 2,703 2,703 2,703 2,892 2,892 2,448
R-squared 0.0000 0.0036 0.0037 0.0030 0.0036 0.0000 0.0010 0.0086

Notes: This table reports the point estimates and 95% confidence intervals from regression of the surgeon group estimates on surgeon-level covariates.
Surgeon group estimates include the fixed effect with interactions as α̂l +

1
K

∑
k κ̂lk from equation (7), i.e., weighting each interaction with each

hospital group equally. Results are similar when using the estimated group effects from equation (12), but not statistically significant. Surgeon group
estimates are positively correlated with surgeons experience in performing CABG within Medicare, measured in log-revenue or log-frequency, and
with surgeons’ surgical and overall experience, measured as surgical and total Medicare revenues respectively. However, the relationship with tenured
experience–measured as the number of years since medical school graduation–is not statistically different from zero. The relationship with the median
household income or total population in the surgeon’s primary practice ZIP code is not statistically significant. Surgeons’ Medicare revenues and
frequency are calculated for years 2012 to 2017 from the CMS Medicare Physician & Other Practitioners file. Surgeon ZIP codes are the primary
practice ZIP codes from the National Plan and Provider Enumeration System (NPPES) data in each year, except for 2013. Primary practice ZIP
codes are missing for 2013. The median household income and total population is aggregated at the surgeon level as the mean across ZIP codes
for years 2011-2012 and 2014-2017. Years since medical school graduation is calculated as of 2010 based on the medical school graduation in the
CMS Doctors and Clinicians dataset. ZIP code level median household income and population comes from the American Community Survey (ACS)
2015-2019 from the U.S. Census Bureau. Standard errors displayed are robust standard errors.
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Table B.10: Correlation of estimated hospital group effects with hospital-level covariates

(1) (2) (3) (4) (5) (6)

Number of beds (log) -0.0006
(0.0010)

Number of operating rooms (log) -0.0024
(0.0011)

Has a residency program 0.0003
(0.0013)

Is affiliated with a medical school 0.0012
(0.0012)

Is non-profit 0.0017
(0.0013)

Owned by gorvernment -0.0032
(0.0023)

Observations 1,167 555 1,167 1,167 1,167 1,167
R-squared 0.0003 0.0079 0.0001 0.0008 0.0016 0.0017

Notes: This table reports the point estimates and 95% confidence intervals from regression of the estimated hospital group effect on hospital-level

covariates. Hospital group effects include the fixed effect with interactions as ψ̂k + 1
L

∑
l κ̂lk from equation (7), i.e., weighting each interaction with

each surgeon group equally. The R2 of the regression including all hospital covariates amounts to about 0.07, but reduces to less than 0.01 when
including all hospitals covariates available for at least 1,000 hospitals. Results are similar when using the estimated group effects from equation (12).
Hospital ownership is obtained from the CMS Hospital General Information dataset for 2017. ZIP code level median household income and population
comes from the American Community Survey (ACS) 2015-2019 from the U.S. Census Bureau. All other hospital-level covariates come from the CMS
provider of service dataset for 2017. Standard errors displayed are robust standard errors.
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Table B.10: Correlation of estimated hospital group effects with hospital-level covariates (continued)

(1) (2) (3) (4) (5) (6) (7)

Population in ZIP code (log) 0.0008
(0.0006)

Median income in ZIP code (USD, log) 0.0009
(0.0017)

Number of physicians employed (log) -0.0000
(0.0004)

Number of nurse practitioner employed (log) -0.0012
(0.0005)

Number of registered nurse employed (log) -0.0004
(0.0007)

Number of licensed nurses under contract (log) -0.0006
(0.0005)

Number of resident physicians (log) 0.0001
(0.0005)

Observations 1,167 1,167 759 701 1,133 1,008 414
R-squared 0.0013 0.0002 0.0000 0.0059 0.0003 0.0014 0.0000

Notes: This table reports the point estimates and 95% confidence intervals from regression of the estimated hospital group effect on hospital-level

covariates. Hospital group effects include the fixed effect with interactions as ψ̂k + 1
L

∑
l κ̂lk from equation (7), i.e., weighting each interaction with

each surgeon group equally. The R2 of the regression including all hospital covariates amounts to about 0.07, but reduces to less than 0.01 when
including all hospitals covariates available for at least 1,000 hospitals. Results are similar when using the estimated group effects from equation (12).
Hospital ownership is obtained from the CMS Hospital General Information dataset for 2017. ZIP code level median household income and population
comes from the American Community Survey (ACS) 2015-2019 from the U.S. Census Bureau. All other hospital-level covariates come from the CMS
provider of service dataset for 2017. Standard errors displayed are robust standard errors.
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Table B.11: Relationship between predicted survival net of provider fixed effects and provider rankings

(1) (2)
Predicted 30-day mortality:

Surgeon’s rank 0.000031
(0.000060)

Hospital’s rank -0.000076
(0.000060)

Observations 130,075 130,075

Notes: This table reports the relationship between predicted 30-day survival net of provider fixed effects and the rank of providers from the model
in equation (7). There is no statistically significant relationship between predicted survival net of provider fixed effects and provider rankings. The

predicted 30-day survival net of provider fixed effects is calculated as p̂it =
∑

p β̂pXit,p + γ̂t estimated from equation (7). Groups are formed using
k -means clustering on average risk-adjusted survival as delineated in Section 3. The rank of providers is calculated based on the predicted risk-
adjusted survival for the provider’s group when all hospitals or surgeons groups are equally likely. Standard errors displayed are robust standard
errors. Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research
Identifiable Files. Years 2011 to 2017 are included.
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Table B.12: Limited evidence of “triaging” within surgeons and within hospitals using patient’s predicted survival net of provider
fixed effects

(1) (2)
Predicted 30-day mortality:

Surgeon’s rank 0.000173
(0.000090)

Hospital’s rank 0.000034
(0.000143)

Observations 130,075 130,075
Hospital FE X
Surgeon FE X

Notes: This table investigates the existence of “triaging” of patients across surgeon groups within hospitals in column (1) and “triaging” of patients
across hospital groups within surgeons in column (2). There is no evidence of systematic adverse selection into higher-survival providers within
surgeons and hospitals. If anything, the positive relationship between predicted survival and surgeon rankings within hospitals suggests advantageous
selection into surgeons within hospitals, which is more consistent with surgeons bringing in their own patients rather than the hospital assigning
surgeons to patients. The relationship is indistinguishable from zero within surgeons, suggesting that surgeons do not systematically “triage” their
patients into higher-survival hospitals. This table reports the coefficients δ̂ from regressions p̂ijht = δ1rankl(j)+λh+ϵijht for hospitals in column (1) and

p̂ijht = δ2rankk(h) +λj + ϵijht for surgeons in column (2). p̂ijht is the predicted 30-day survival net of provider fixed effects as p̂ijht =
∑

p β̂pXit,p + γ̂t
from equation (7). λh and λj are individual hospital and surgeon fixed effects respectively. The rank of providers is calculated based on the predicted
risk-adjusted survival for the provider’s group when all hospitals or surgeons groups are equally likely. Groups are formed using k -means clustering on
average risk-adjusted survival as delineated in Section 3. Standard errors displayed are clustered as the hospital level in column (1) and the surgeon
level in column (2). Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR
Research Identifiable Files. Years 2011 to 2017 are included.
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Table B.13: Decomposition of the explained variance in 30-day survival, net of covariates

Percentage of explained variance
net of covariates (%)

Selection on observables Control function

Hospitals 9.56 6.09
V ar(ψk(h)) (0.92) (1.57)

Surgeons 65.33 72.44
V ar(αl(j)) (1.77) (4.15)

Sorting 25.11 21.46
2× cov(αl(j), ψk(h)) (0.99) (2.71)

Correlation surgeon-hospital FE 0.50 0.51
Corr(αl(j), ψk(h)) (0.02) (0.04)

N patients 110,672 110,672
N surgeons 2,892 2,892
N hospitals 1,167 1,167

Notes: This table shows the decomposition of the explained variance in 30-day survival net of covariates for a model without interactions as delineated
in equation (A.2). Fixed effects are estimated following equation (A.1). The contribution of surgeon groups is large, and larger than the contribution of
hospital groups. The covariance between estimated surgeon and hospital group fixed effects is positive and large, revealing strong positive assortative
matching of surgeon groups across hospital groups. The sum of hospitals’, surgeons’, and the sorting contributions is equal to 100%. Professional fees
come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research Identifiable Files. Years
2011 to 2017 are included. Standard errors in parenthesis are bootstrapped standard errors using 1,000 replications.
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Table B.14: Variance decomposition for 30-day survival

Percentage of variance (%)

Selection on observables Control function

Hospitals 0.25 0.17
V ar(ψk(h))

Surgeons 1.69 2.04
V ar(αl(j))

Sorting 0.65 0.60
2× cov(αl(j), ψk(h))

Patients covariates 1.33 1.85
V ar(βXit)

Year 0.14 0.14
V ar(λt)

Covariance FEs-patients covariates -0.23 -0.48
2× cov(αl(j) + ψk(h) + λt, βXit)

Covariance surgeon and hospital-year -0.00 -0.01
2× cov(αl(j) + ψk(h), λt)

Residuals 96.18 95.68
V ar(ϵijht)

N patients 110,672 110,672
N surgeons 2,892 2,892
N hospitals 1,167 1,167

Notes: This table shows the total variance decomposition of patients 30-day survival. Fixed effects are estimated following equation (A.1). The
contribution of surgeons is large, larger than the contribution of hospitals, and comparable to the contribution of included patient observables. The
covariance between estimated surgeon and hospital group fixed effects is positive, revealing positive assortative matching of surgeons across hospitals.
The fraction of the variance explained remains small, at about 4%, which is consistent with the literature (Hull, 2018). Elements in each column sum
to 100%. Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR Research
Identifiable Files. Years 2011 to 2017 are included.
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Table B.15: The relationship between patient outcomes and distance to the chosen hospital
is similar when including patient observables

(1) (2) (3)
30-day survival

Log distance (km) 0.00119 0.00126 0.00148
(0.00059) (0.00060) (0.00066)

Observations 102,589 102,589 102,589
R-squared 0.00587 0.01209 0.01771
Patient’s HRR FE Yes Yes Yes
Patients’ observables Health-income-age All

Notes: This table illustrates the stability of the relationship between 30-day survival and the logarithm
of distance when including different set of patient observables in Xit. The estimated regression is Yi =
α0 + α1 ln dih + α3Xit + λHRR(i) + ϵi where Yi is 30-day survival, dih is the distance between the patient’s
and the chosen hospital’s ZIP codes, λHRR(i) are patient HRR fixed effects, and Xit includes different sets of
patient observables. Column (1) includes no patient covariate, column (2) includes patient age bins, Charlson
score, and ZIP code log income per capita, and column (3) includes all available patient observables depicted
in Table 2. The stability of the logarithm of distance parameter across specifications lends support for
the exclusion restriction assumption. Hospital ZIP codes come from the 2017 National Plan and Provider
Enumeration System (NPPES) data, and beneficiary ZIP codes from the Medicare Beneficiary Research
Identifiable Files. Distances are calculated using ZCTA-to-ZCTA distances for distances below 100 miles,
using HSA-to-HSA distances when above 100 miles and when patient and provider HSAs differ, and capped
at 100 miles when patients and providers are in the same HSA but with ZCTAs distant over 100 miles.
Patients’ residential ZIP codes are mapped to income per capita and total population using the American
Community Survey (ACS) 2015-2019 from the U.S. Census Bureau. The Charlson score and comorbidities
are obtained using all diagnoses appearing in inpatient, outpatient, and professional fee claims up to the
twelve months prior to the surgery. The definition of hospital referral regions (HRRs) follows the definition of
the Dartmouth Atlas Project. Years 2011 to 2017 are included. Standard errors in parenthesis are clustered
at the patient’s HRR level.
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Table B.16: Robustness of the substitutability result to selection into providers

(1) (2) (3)
Baseline Control function No emergencies

Slope surgeon rank 1 (worst) 1.85 1.38 2.32
(1.11) (1.28) (1.52)

Slope surgeon rank 2 1.58 1.45 2.12
(0.40) (0.65) (0.55)

Slope surgeon rank 3 1.37 1.30 1.41
(0.30) (0.41) (0.39)

Slope surgeon rank 4 0.84 0.71 0.75
(0.20) (0.24) (0.24)

Slope surgeon rank 5 (best) 0.15 0.01 0.08
(0.06) (0.14) (0.04)

p-value: equality of slopes <0.01 <0.01 <0.01
p-value: slope rank 5 ≥ 1 <0.01 <0.01 <0.01
p-value: slope rank 4 ≥ 2 <0.01 <0.01 <0.01

Observations 130,075 130,075 100,329
Surgeon type FEs X X X

Notes: This table reports the estimated slope coefficient per group of surgeons for alternative specifications.
The slopes β̂L are obtained from the regression ŷijht =

∑5
L=1 1{j ∈ L}βLrankk(h)+λL+ ϵijht where ŷijht is

the predicted 30-day risk-adjusted survival from models delineated in equations (7) or (12), L is the rank of
the surgeons’ group, k(h) is the group of hospital h, rankk(h) is the rank of hospital group k(h), and λL are
surgeon group fixed effects. Surgeon groups are ranked based on the predicted 30-day risk-adjusted survival
for each group assuming each interaction with a hospital group is equally likely. Similarly, hospital groups
are ranked using the predicted 30-day risk-adjusted survival for each group assuming each interaction with
a surgeon group is equally likely. The predicted survival is expressed in percentage points of survival. The
control function approach is estimated based on equation (12). To exclude CABG surgery potentially per-
formed in an emergency setting, I exclude all hospital claims with non-zero emergency department amounts.
Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from
the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included. Standard errors in
parenthesis are bootstrapped standard errors using 1,000 replications.
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Table B.17: Robustness of the substitutability result to alternative number of groups

(1) (2) (3) (4)
Baseline K = 10; L = 5 K = 5; L = 10 K = 10; L = 10

Slope surgeon rank 1 (worst) 1.85 1.28 1.48 1.27
(1.11) (0.60) (2.34) (1.27)

Slope surgeon rank 2 1.58 0.85 1.56 0.94
(0.40) (0.21) (0.81) (0.43)

Slope surgeon rank 3 1.37 0.62 1.41 0.84
(0.30) (0.16) (0.51) (0.27)

Slope surgeon rank 4 0.84 0.37 1.25 0.63
(0.20) (0.11) (0.40) (0.21)

Slope surgeon rank 5 0.15 0.10 0.87 0.43
(0.06) (0.04) (0.39) (0.21)

Slope surgeon rank 6 0.80 0.57
(0.53) (0.26)

Slope surgeon rank 7 1.11 0.37
(0.49) (0.23)

Slope surgeon rank 8 0.48 0.23
(0.30) (0.15)

Slope surgeon rank 9 0.29 0.15
(0.21) (0.10)

Slope surgeon rank 10 (best) -0.03 -0.01
(0.03) (0.02)

p-value: equality of slopes <0.01 <0.01 <0.01 <0.01
p-value: slope rank 5 ≥ 1 <0.01 <0.01
p-value: slope rank 4 ≥ 2 <0.01 <0.01
p-value: slope rank 10 ≥ 1 0.12 0.04
p-value: slope rank 8 ≥ 3 <0.01 <0.01

Observations 130,075 130,075 130,075 130,075
Surgeon type FEs X X X X

Notes: This table reports the estimated slope coefficient per surgeon group for alternative specifications.
The slopes β̂L are obtained from the regression ŷijht =

∑5
L=1 1{j ∈ L} βLrankk(h) + λL + ϵijht where ŷijht

is the predicted 30-day risk-adjusted survival from models delineated in equation (7), L is the rank of the
surgeon group, k(h) is the group of hospital h, rankk(h) is the rank of hospital group k(h), and λL are surgeon
group fixed effects. Surgeon groups are ranked based on the predicted 30-day risk-adjusted survival for each
group assuming each interaction with a hospital group is equally likely. Similarly, hospital groups are ranked
using the predicted 30-day risk-adjusted survival for each group assuming each interaction with a surgeon
group is equally likely. The predicted survival is expressed in percentage points of survival. Groups are
formed using k -means clustering on average risk-adjusted survival as delineated in Section 3. Professional
fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare
MedPAR Research Identifiable Files. Years 2011 to 2017 are included. Standard errors in parenthesis are
bootstrapped standard errors using 1,000 replications.
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Table B.18: Robustness of the substitutability result to alternative classifications

(1) (2) (3) (4) (5)
Baseline Cond. moments Quintiles K-means: all outcomes K-means: noise-adjusted

Slope surgeon rank 1 (worst) 1.85 1.62 1.67 0.97 1.45
(1.11) (0.99) (0.18) (0.41) (1.52)

Slope surgeon rank 2 1.58 1.31 0.98 0.62 1.21
(0.40) (0.34) (0.13) (0.26) (0.55)

Slope surgeon rank 3 1.37 0.79 0.70 0.38 0.66
(0.30) (0.26) (0.10) (0.38) (0.39)

Slope surgeon rank 4 0.84 0.43 0.28 0.20 0.37
(0.20) (0.18) (0.08) (0.19) (0.24)

Slope surgeon rank 5 (best) 0.15 0.12 -0.01 0.13 0.16
(0.06) (0.06) (0.02) (0.17) (0.04)

p-value: equality of slopes <0.01 <0.01 <0.01 <0.01 <0.01
p-value: slope rank 5 ≥ 1 <0.01 <0.01 <0.01 <0.01 <0.01
p-value: slope rank 4 ≥ 2 <0.01 <0.01 <0.01 0.02 <0.01

Observations 130,075 130,075 130,075 130,075 130,075
Surgeon type FEs X X X X X

Notes: This table reports the estimated slope coefficient per group of surgeons for alternative specifications. The slopes β̂L are obtained from the
regression ŷijht =

∑5
L=1 1{j ∈ L} βLrankk(h) + λL + ϵijht where ŷijht is the predicted 30-day risk-adjusted survival from models delineated in

equation (7), L is the rank of the surgeons’ group, k(h) is the group of hospital h, rankk(h) is the rank of hospital group k(h), and λL are surgeon
group fixed effects. Surgeon groups are ranked based on the predicted 30-day risk-adjusted survival for each group assuming each interaction with a
hospital group is equally likely. Similarly, hospital groups are ranked using the predicted 30-day risk-adjusted survival for each group assuming each
interaction with a surgeon group is equally likely. The predicted survival is expressed in percentage points of survival. The second column reports
results when hospital groups (five) are formed using k -means clustering on the following conditional moments for average risk-adjusted survival:
patients above/below the median Charlson score, above/below the median age, above/below the median income per capita, and male/female. The
surgeon groups (five) are formed using k -means clustering on average risk-adjusted survival as delineated in Section 3. The third column reports
results when hospitals and surgeons are grouped into quintiles of 30-day risk-adjusted survival. The fourth column indicates results when k -means
clustering is performed using all outcomes, i.e. using average survival, length of stay and hospital spending. Outcomes are standardized when entering
the k -means algorithm. The last colmn reports results when k -means clustering is performed using risk-adjusted estimates for surgeons and hospitals
that are adjusted for noise using empirical Bayes shrinkage as delineated in Appendix A.5. Hospital spending corresponds to the facility payment
made to the hospital. Professional fees come from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR
Research Identifiable Files. Years 2011 to 2017 are included. Standard errors in parenthesis are bootstrapped standard errors using 1,000 replications.
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Table B.19: Predicted length of stay and hospital spending across hospital groups
with/without surgeon and sorting effects

Length of stay Hospital spending
(days) (USD, x1,000)

Hospital rank
based on survival Average Hospital effect only Average Hospital effect only

Rank 1 (worst) 10.20 9.58 44.92 38.97
Rank 2 10.24 9.92 43.01 38.77
Rank 3 10.57 10.22 44.29 42.99
Rank 4 10.25 9.82 43.90 39.43
Rank 5 (best) 10.16 10.43 43.24 42.93

Notes: This table reports the average predicted length of stay and hospital spending for the average patient
across hospital ranks, when hospitals are ranked based on their estimated effect using 30-day risk-adjusted
survival as delineated in equation 7. Columns reporting averages are simple average across patients when
including hospital, surgeon, and sorting effects, while the other columns isolate the hospital effect. While
average predicted length of stay or hospital spending appears relatively similar across hospital groups, hos-
pital effects that are “purged” from surgeon and sorting effects reveal more variation across hospital groups.
Interestingly, high-survival hospitals tend to exhibit longer length of stay and hospital spending fixed effects.
This evidence is consistent with a “failure-to-rescue” mechanism where high-survival hospitals achieve high-
survival through “rescuing” patients with more intensive care. Hospital group effects include the fixed effect

with interactions as ψ̂k + 1
L

∑
l κ̂lk from equation (7), where interactions are weighted equally to represent

the hospital effect if every surgeon group was equally likely, using either length of stay or hospital spending
as the outcome but keeping the groupings formed using risk-adjusted survival.
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Table B.20: Individual fixed effects corrections: plug-in (AKM) and leave-out (KSS)

Fixed effects Corrected
(AKM) (KSS)

Risk-adjusted length of stay
Covariance surgeon-hospital -5.59 0.92
Percentage of explained variance (%) -117.34 19.23
Percentage of total variance (%) -8.53 1.40

Risk-adjusted hospital spending
Covariance surgeon-hospital -75,686,104 49,466,240
Percentage of explained variance (%) -44.15 28.86
Percentage of total variance (%) -6.37 4.17

N 33,845 33,845
Percentage of full set (%) 26.02 26.02

Notes: This table reports the estimated covariance between individual hospital and surgeon fixed effects in
a model without interactions when using the plug-in estimator as in Abowd, Kramarz, and Margolis (1999)
(AKM) and when using the leave-out correction from Kline, Saggio, and Sølvsten (2020), referred to as KSS
here. They are estimated using the Kline, Saggio, and Sølvsten (2020) Matlab package LeaveOutTwoWay.
While the AKM estimator points to strong negative matching, corrected estimates indicate strong positive
assortative matching. The corrected results are consistent with the grouped fixed-effects results for both
outcomes reported in Panel F of Table 5. Note that the leave-one-out connected set represents about a quarter
of the full sample: this connected set represents the largest set of hospitals connected by surgeons after any
surgeon from the graph is removed. The reported leave-out corrections are robust to heteroskedasticity and
serial correlation of the error term within a surgeon-hospital pair. The estimates are performed on risk-
adjusted outcomes, computed as the ratio of observed over predicted at the patient level multiplied by the
average outcome in the sample, without additional controls. Predictions for risk-adjustment are obtained
using Poisson regressions and including all patient covariates and year fixed effects. Professional fees come
from the Medicare 20% carrier Research Identifiable Files, and hospital stays from the Medicare MedPAR
Research Identifiable Files. Years 2011 to 2017 are included.
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Table B.21: Robustness of the substitutability result to other outcomes

(1) (2) (3)
30-day survival (baseline) Length of stay Hospital spending

Slope surgeon rank 1 (worst) 1.85 -1.24 -10,308.1
(1.11) (0.43) (5281.12)

Slope surgeon rank 2 1.58 -0.55 -7,127.9
(0.40) (0.11) (1031.64)

Slope surgeon rank 3 1.37 -0.56 -4,964.4
(0.30) (0.08) (971.35)

Slope surgeon rank 4 0.84 -0.50 -4,408.7
(0.20) (0.09) (927.76)

Slope surgeon rank 5 (best) 0.15 -0.39 -4,146.2
(0.06) (0.11) (1442.28)

p-value: equality of slopes <0.01 <0.01 <0.01
p-value: slope rank 5 ≥ 1 <0.01 0.99 0.97
p-value: slope rank 4 ≥ 2 <0.01 0.99 0.99

Observations 130,075 130,075 130,075
Surgeon type FEs X X X

Notes: This table reports the estimated slope coefficient per surgeon group for alternative specifications.
The slopes β̂L are obtained from the regression ŷijht =

∑5
L=1 1{j ∈ L} βLrankk(h) + λL + ϵijht where ŷijht

is the predicted outcome from models delineated in equation (7), L is the rank of the surgeon group, k(h) is
the group of hospital h, rankk(h) is the rank of hospital group k(h) in terms of predicted outcome, and λL are
surgeon group fixed effects. The predicted survival is expressed in percentage points of survival, predicted
length of stay in days, and predicted hospital spending in USD. Groups are formed using k -means clustering
on average risk-adjusted survival as delineated in Section 3 for the first column, and on the specified outcome
for the other two columns. Professional fees come from the Medicare 20% carrier Research Identifiable Files,
and hospital stays from the Medicare MedPAR Research Identifiable Files. Years 2011 to 2017 are included.
Standard errors in parenthesis are bootstrapped standard errors using 1,000 replications.
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